Answers to the Exercises

2. Symmetric-Key Cryptography

1. If all keys are equal, then $C_0 = 0 \ldots 0$ or $C_0 = 1 \ldots 1$.
 We consider for example the bits at the positions 2,3,5,7,9,11,13,15,16,18,20,22,24,26,28,1 of C_0 and denote this sequence by b_1, b_2, \ldots, b_{16}.
 Bit b_i appears as bit number 5 in k_i, $i = 1, \ldots, 16$. Thus we have $b_1 = b_2 = \ldots = b_{16}$, because all keys are equal. Additionally we consider the positions 3,4,6,8,10,12,14,16,17,19,21,23,25,27,1,2 of C_0. The i-th bit in this sequence is the 24-th bit of k_i. Thus all bits at these positions are equal. Position 3 appears in both cases. Thus all bits of C_0 are equal.
 Similar arguments show that $D_0 = 0 \ldots 0$ or $D_0 = 1 \ldots 1$.
 We obtain the four weak keys by combining the possible values of C_0 and D_0. If we apply $PC1$ to the four rows

 \[
 \begin{array}{cccccccc}
 01 & 01 & 01 & 01 & 01 & 01 & 01 & 01 \\
 FE & FE \\
 1F & 1F & 1F & 0E & 0E & 0E & 0E \\
 E0 & E0 & E0 & F1 & F1 & F1 & F1
 \end{array}
 \]

 we see that the four rows are the weak keys of DES. Note that $PC1$ is a permutation on 56 bits. The bits in the positions 8,16,24,32,40,48,56,64 are not used.

2. a. Note that \overline{k} yields \overline{k}_i, if k yields k_i and that $E(\overline{x}) = \overline{E(x)}$. Thus

 \[
 f(\overline{x}, \overline{k}) = P(S(E(\overline{x}) \oplus \overline{k})) = P(S(E(x) \oplus k)) = f(x, k)
 \]

 and

 \[
 \phi_i(\overline{x}, \overline{y}) = (\overline{x} \oplus f_i(\overline{y}), \overline{y})
 = (\overline{x} \oplus f(\overline{y}, \overline{k}_i), \overline{y})
 = (\overline{x} \oplus f(y, k_i), \overline{y})
 = (\overline{x} \oplus f_i(y), \overline{y})
 = (x \oplus f_i(y), \overline{y})
 = \phi_i(x, y).
 \]
Hence we get
\[
\begin{align*}
\text{DES}_k(x) &= \text{IP}^{-1}(\phi_{16}(\mu(\phi_{15}(\ldots \mu(\phi_2(\mu(\phi_1(\text{IP}(x))))))))) \\
&= \text{IP}^{-1}(\phi_{16}(\mu(\phi_{15}(\ldots \mu(\phi_2(\mu(\phi_1(\text{IP}(x))))))))) \\
&\quad \vdots \\
&= \text{IP}^{-1}(\phi_{16}(\mu(\phi_{15}(\ldots \mu(\phi_2(\mu(\phi_1(\text{IP}(x))))))))) \\
&= \text{DES}_k(x).
\end{align*}
\]

b. \(\text{DES}(k, x) = y\) implies
\[
\text{DES}(\bar{k}, x) = \text{DES}(\bar{k}, \bar{x}) = \overline{\text{DES}(k, x) = y}.
\]

Assume \(c = \text{DES}_k(m)\) and \(\bar{c} = \text{DES}_k(\bar{m})\) are known.
Choose \(k'\) and compute \(y = \text{DES}(k', \bar{m})\).

i. If \(y = \bar{c}\), then the key is \(k'\).

ii. If \(y = c\), then the key is \(\bar{k}\).

Thus, we can test the two keys \(k'\) and \(\bar{k}\) with one encryption.

3. We apply MixColumns to the four bytes of one column. Let \(M\) be the \(4 \times 4\) matrix, that defines the MixColumns step. Then \((I_4|M'),\) where \(I_4\) is the \(4 \times 4\) unit matrix, is the generator matrix of a linear code \(C\).
Each codeword consists of 8 bytes. \(C\) is a maximum distance separable (MDS) code, this means, that the minimum distance of \(C\) is 5. The 4 parity bytes of the 4 information bytes \((i_1, i_2, i_3, i_4)\) are computed by the multiplication \((i_1, i_2, i_3, i_4)M' = (i_1, i_2, i_3, i_4)'\). The distance between two codewords from \(C\) is at least 5, which means that two codewords differ at least in 5 positions. Thus if \(M\) is applied to two vectors, that differ in \(k\) bytes, \(1 \leq k \leq 4\), the outputs differ in at least \(5 - k\) bytes.
If we change one byte in the plaintext, then after the first round all 4 bytes of one column in the state are affected. Thanks to ShiftRows these 4 bytes are transferred to different columns in the second round. Then, after the application of MixColumns in the second round all bytes of the state are affected.

4. Let \(f : \{0,1\}^n \rightarrow \{0,1\}^n\) be a permutation, \(x_1\) an initial value and \(x_1, x_2, \ldots\) the sequence obtained by applying \(f\). Then there exists an \(i\) with \(f(x_i) \in \{x_1, \ldots, x_i\}\). Let \(j\) be the first \(i\) with this property. Since \(f\) is a permutation \(f(x_j) = x_1\). Otherwise an element would have two preimages. \((x_1, \ldots, x_j)\) is a cycle of \(f\). The average period of the key stream is the average length of a cycle of a randomly selected permutation.
Let \(S\) be a set, \(|S| = k\) and
\[
C_m = \{c \mid c \text{ is an cycle of length } m \text{ of a permutation on } S\}.
\]

The number of different cycles \((x_1, \ldots, x_m)\) is \(\frac{k(k-1) \ldots (k-m+1)}{m}\) (note \((x_1, \ldots, x_m), (x_2, \ldots, x_m, x_1), \ldots, (x_m, x_1, \ldots, x_{m-1})\) define the same cy-
5. Elements \((x, y)\) in the domain of \(f\) are bit-strings of length \(2(|q - 1|)\).

Elements in the range \(G_q \subset \mathbb{Z}_p^*\) are encoded as bit strings of length \(|p|\).

Since \(|q - 1| = |q| = |p| - 1\), we may consider \(f\) as a compression function.

Assume \((x_1, y_1), (x_2, y_2)\) is a collision of \(f\). Then \(g^{x_1} h^{y_1} = g^{x_2} h^{y_2}\). Thus \(g^{x_1 - x_2} = h^{y_2 - y_1}\). If \(y_1 = y_2\), then \(x_1 = x_2\) and \((x_1, y_1) = (x_2, y_2)\). This is a contradiction, since \((x_1, y_1), (x_2, y_2)\) cannot be equal, as a collision of \(f\). Thus \(y_1 \neq y_2\). We get \(\log_g h = \frac{x_1 - x_2}{y_2 - y_1}\).

6. All bits of the columns defined by \(x = 3, z = 0\) and \(x = 1, z = 63\) and the bit at \(x = 0, y = 0, z = 63\) are 1 bits. All other bits are 0 bits.

7. Given a value \(v \in \{0,1\}^n\), we randomly select messages \(m \in \{0,1\}^*\) and check, if \(h(m) = v\). We don’t have to check, if we have selected a message twice. The probability for this event is negligibly small (note that the set of messages is infinite). The probability that \(h(m) = v\) is \(1/2^n\). Lemma B.12 – with \(p = 1/2^n\) – says that we expect to select \(2^n\) messages \(m\) until \(h(m) = v\). The expected number of steps does not depend on \(v\), and we conclude immediately that the expected number of steps in the brute-force attack against the one-way property of \(h\) is \(2^n\). To attack second pre-image resistance, we consider a message \(m' \in \{0,1\}^*\).

Let \(v = h(m')\). We randomly select messages \(m \in \{0,1\}^*, m \neq m'\) and check, if \(h(m) = v\). As before, the probability that \(h(m) = v\) is \(1/2^n\), and the expected number of steps is \(2^n\).

8. a. Let \(M||IV\) be the MAC-code for \(m_1||m_2||\ldots||m_l\). Then \(M||IV'\) is the MAC-code for \(m_1 \oplus IV \oplus IV'||m_2||\ldots||m_l\). Thus, the adversary Eve can replace the first block \(m_1\) by a block of her choice.

b. If \(c_1||c_2||\ldots||c_l\) is the MAC-code for \(m_1||m_2||\ldots||m_l\). Then \(c_1||c_2||\ldots||c_l\) is a MAC-code for \(m_1||m_2||\ldots||m_i, 1 \leq i \leq l\).
c. If a and b are different messages with (identical) MAC-code M, then $a\|c$ and $b\|c$ also have identical MAC-codes for every message c.

Introduction to Cryptography by H. Delfs and H. Knebl
3. Public-Key Cryptography

2. By the Chinese remainder theorem we have

\[\mathbb{Z}_n^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^* \]

and \(\mu \) decomposes into

\[(\mu_1, \mu_2): \mathbb{Z}_p^* \times \mathbb{Z}_q^* \to \mathbb{Z}_p^* \times \mathbb{Z}_q^*, (x_1, x_2) \mapsto (x_1^e, x_2^e) \]

\(\mu \) is an isomorphism if and only if \(\mu_1, \mu_2 \) are isomorphisms. Now

\[\mu_1: \mathbb{Z}_p^* \to \mathbb{Z}_p^*, x \mapsto x^e \]

and

\[\mu_2: \mathbb{Z}_q^* \to \mathbb{Z}_q^*, x \mapsto x^e \]

are isomorphisms if and only if \(\gcd(e, p-1) = 1 \) and \(\gcd(e, q-1) = 1 \). This implies the assertion.

3. Let \(g \) be a primitive root in \(\mathbb{Z}_p^* \)

\[\text{Exp}: \mathbb{Z}_p^* \to \mathbb{Z}_p^*, \alpha \mapsto g^\alpha \]

is an isomorphism of groups. Let \(k \in \mathbb{N}, x \in \mathbb{Z}_p^* \) and \(x^k = 1 \). Then \(x = g^\nu \) and \(x^k = g^{\nu k} \). Hence \(p - 1 \) divides \(\nu k \). This implies

\[\left| \{x \in \mathbb{Z}_p^* \mid x^k = 1\} \right| = \left| \{\nu \in \mathbb{Z}_{p-1} \mid \nu k \equiv 0 \mod (p-1)\} \right| = \left| \left\{ \frac{p-1}{d} l \mid 1 \leq l \leq d \right\} \right| = d, \]

where \(d = \gcd(k, p-1) \).

Now \(\mathbb{Z}_n^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^* \) and \(x^{e-1} = 1 \) if and only if \((x_1^{e-1}, x_2^{e-2}) = (1, 1) \), where \(x_1 = x \mod p \) and \(x_2 = x \mod q \). This implies

\[\left| \{x \in \mathbb{Z}_n^* \mid \text{RSA}_{n,e}(x) = x\} \right| = \gcd(e - 1, p - 1) \gcd(e - 1, q - 1). \]

4. Compute \(\lambda = ed - 1, \lambda = 2^tm, m \text{ odd} \). \(\lambda \) is a multiple of \(\varphi(n) \). Thus \([a^\lambda] = 1 \) for all \([a] \in \mathbb{Z}_n^* \). Let

\[W_n := \left\{ [a] \in \mathbb{Z}_n^* \mid a^m \equiv 1 \mod n \right\} \]

or there is an \(i, 0 \leq i \leq t - 1 \), with \(a^{2^im} \equiv -1 \mod n \).

Let \([a] \notin W_n \). Then there is an \(i, 0 \leq i \leq t - 1 \), with \(a^{2^{i+1}m} \equiv 1 \mod n \) and \(a^{2^i m} \not\equiv \pm 1 \mod n \). Then \([a^{2^im}] \) and \([1]\) are square roots of \([1]\), and the

\[H. Delfs and H. Knebl \]

©H. Delfs and H. Knebl
factors of n can be computed by the Euclidean algorithm (Lemma A.69). Let $W_n := Z_n^* \setminus W_n$ be the complement of W_n. Then $|W_n| \geq \frac{\varphi(n)}{2}$ (see below). Hence, choosing a random $[a] \in Z_n^*$ we can compute the factors of n in this way with probability $\geq 1/2$, since $[a]$ is not in W_n with a probability $\geq 1/2$. Repeating the random choice t-times, if necessary, we can increase the probability of success to $\geq 1 - 2^{-t}$.

It remains to show that $W_n' := \{[a] \in Z_n^* \mid a^{2^m} \equiv -1 \mod n\}$.

W_n' is not empty, since $[-1] \in W_n'$. Let $r = \max\{i \mid W_n^i \neq \emptyset\}$ and $U := \{a \in Z_n^* \mid a^{2^m} \equiv \pm 1 \mod n\}$.

U is a subgroup of Z_n^* and $W_n \subset U$.

Let $[x] \in W_n'$. By the Chinese Remainder Theorem A.30, there is a $[w] \in Z_n^*$ with $w \equiv x \mod p$ and $w \equiv 1 \mod q$. Then $w^{2^m} \equiv -1 \mod p$ and $w^{2^m} \equiv +1 \mod q$, hence $w^{2^m} \not\equiv \pm 1 \mod n$. Thus, $w \not\in U$, and we see that U is indeed a proper subgroup of Z_n^*. Thus $|W_n| \leq \frac{\varphi(n)}{2}$.

6. a. Let $R_{p'} := \{x \in Z_p^* \mid p' \text{ does not divide } \text{ord}(x)\}$.

Note that

i. p' does not divide $\text{ord}(x)$, if and only if $\text{ord}(x)$ divides a, and that

ii. p' divides ν, where ν is defined by a representation $x = g^\nu$ of x with a primitive root g.

Thus,

$$|R_{p'}| = |\{x \in Z_p^* \mid \text{ord}(x) \mid a\}| = |\{g^{p'\nu} \mid 1 \leq \nu \leq a\}| = a.$$

b. Let $R_{p'q'} := \{x \in Z_n^* \mid p'q' \text{ does not divide } \text{ord}(x)\}$.

Note $\text{ord}(x)$ is the least common multiple of $\text{ord}(x \mod p)$ and $\text{ord}(x \mod q)$.

$p'q'$ does not divide $\text{ord}(x)$, if and only if p' does not divide $\text{ord}(x \mod p)$ or q' does not divide $\text{ord}(x \mod q)$.

By the Chinese Remainder Theorem, we have

$$Z_p^* \times R_{q'} \cup R_{p'} \times Z_q^* = R_{p'q'},$$

$$Z_p^* \times R_{q'} \cap R_{p'} \times Z_q^* = R_{p'} \times R_{q'}.$$

This implies $|R_{p'q'}| = (p-1)b + a(q-1) - ab$ and

$$\frac{|R_{p'q'}|}{\varphi(n)} = \frac{(p-1)b + a(q-1) - ab}{ap'bq'} = \frac{1}{p'} + \frac{1}{q'} - \frac{1}{p'q'}. $$

7. a. RSA_{n,e}(x) = x^{e^l} = x \text{ if } e^l \equiv 1 \mod \varphi(n). \text{ The last condition is satisfied for } l = \varphi(\varphi(n)).$

Introduction to Cryptography by H. Delfs and H. Knebl
3. Public-Key Cryptography

b. \(x^{e^i} = x \) is equivalent to \(x^{e^i-1} = 1 \). The last equation is equivalent to \(e^i \equiv 1 \mod \text{ord}(x) \).

To prevent the decryption-by-iterated-encryption attack, it is required that \(\text{ord}(e \mod \text{ord}(x)) \) is large for \(x \) and \(e \).

We show that the set of “exceptions”,

\[
\{(x, e) \in \mathbb{Z}_n^* \times \mathbb{Z}_{\varphi(n)}^* \mid \text{ord}(e \mod \text{ord}(x)) < p''q'' \}
\]

is an exponentially small subset of \(\mathbb{Z}_n^* \times \mathbb{Z}_{\varphi(n)}^* \). The frequency of elements \(x \in R_{p'}q'' \) (see Exercise 6) is exponentially small. Let \(x \notin R_{p'}q'' \). Then \(n' = p'q' \) divides \(k \), \(k := \text{ord}(x) \). Then \(\text{ord}(e \mod n') \) divides \(\text{ord}(e \mod k) \).

Thus, if \(p''q'' \) divides \(\text{ord}(e \mod n') \) then \(p''q'' \) divides \(\text{ord}(e \mod k) \) and \(\text{ord}(e \mod k) \) is large.

Let \(R_{p''q''} := \{ e \in \mathbb{Z}_n^* \mid p''q'' \text{ does not divide } \text{ord}(e) \} \).

Let \(f \) be the frequency of elements \(e \in R_{p''q''} \).

By Exercise 6, \(f = \frac{1}{p'} + \frac{1}{q'} - \frac{1}{p''q''} \) is exponentially small. The discussion shows that \(p''q'' \) is a lower bound for the number of iterations of the repeat-until loop for all \((x, e) \) outside an exponentially small subset of \(\mathbb{Z}_n^* \times \mathbb{Z}_{\varphi(n)}^* \).

9. a. We assume that it is possible to compute discrete logarithms in \(H \) and \(y' \in H \).

b. The verification condition in ElGamal’s signature scheme is \(g^m = y^t r^s \).

\[
y^t r^s = y^t r^s = y^t r^s = g^t z r^s
\]

\[
= g^{t z (p-3)(m-tz)/2} = g^{t z (t(p-1)/2 t^{-1}) m-tz}
\]

\[
= g^{t z (-t^{-1}) m-tz} = g^{t z m-tz} = g^m.
\]

Note that \(gt = p-1 = -1 \mod p \) implies \(t = -g^{-1} \) and \(g = -t^{-1} \) and that

\[
t(p-1)/2 = (-g)^{(p-1)/2} = (-1)^{(p-1)/2} g^{-(p-1)/2} = 1 \cdot (-1) = -1
\]

\((g^{-(p-1)/2} = -1, \text{ since } g \text{ is a primitive root}) \).

c. The above attack does not work in the DSA signature scheme.

12. The domain parameters \((F_q, a, b, Q, n, h)\) are assumed to be publicly known. Let \((d_A, P_A)\) be Alice’s key pair.

Signing. Messages \(m \) to be signed must be elements in \(\mathbb{Z}_n \). In practice, a hash function \(H \) is used to map real messages to elements of \(\mathbb{Z}_n \). The signed message is produced by Alice using the following steps:

a. Alice selects a random integer \(k, 1 \leq k \leq n-1 \).

© H. Delfs and H. Knebl
b. She computes $kQ := (x_{kQ}, y_{kQ})$ and converts x_{kQ} to an integer and sets $\tilde{r} := x_{kQ} \mod n$.

c. She sets $r := (\tilde{r} + m) \mod n$. If $r = 0$, she returns to step 1.

d. She sets $s := (k - rd_A) \mod n$.

e. (m, r, s) is the signed message.

Verification. Bob verifies the signed message (m, r, s) as follows:

a. He verifies that $1 \leq r \leq n - 1$ and $0 \leq s \leq n - 1$; if not, then he rejects the signature.

b. He computes $R := sQ + rP_A$ (P_A is the public key of Alice). If $R = O$ the signature is rejected.

c. Let $R = (x_R, y_R)$ and convert x_R as an integer. The signature is accepted if $x_R = (r - m) \mod n$; otherwise it is rejected.

If Alice signed the message (m, r, s), we have $x_R \equiv (r - m) \mod n$:

$$R = sQ + rP$$
$$= (k - rt)Q + (\tilde{r} + m)tQ$$
$$= (k - rt + \tilde{rt} + mt)Q$$
$$= (k + t(\tilde{r} + m - r))Q$$
$$= kQ.$$

Hence we have $x_R = x_{kQ} \equiv (r - m) \mod n$.

In the Nyberg–Rueppel signature scheme the message m can be recovered from the signature (r, s): $m = r - x_R \mod n$.

The Nyberg–Rueppel signature scheme is existentially forgeable when used without a hash function. An adversary Eve can construct a message m and a valid signature (r, s) on m. She selects $r, s, 1 \leq r \leq n - 1$ and $0 \leq s \leq n - 1$, at random. Sets $R = rQ + sP_A$ and $m = r - x_R \mod n$. Thus, $x_R = r - m \mod n$ and (m, r, s) is a valid signed message. If used with a cryptographic hash function H, adversary Eve has to find some meaningful message \tilde{m} with $H(\tilde{m}) = m$. Since H has the one-way property, this is practically infeasible.
4. Cryptographic Protocols

1. With this protocol the simple man-in-the-middle attack does not work. A more sophisticated attack is necessary. If the adversary Eve selects e and declares y^e_A as her public key, a man-in-the-middle attack works:
 a. Eve intercepts c and forwards it unchanged to Bob.
 b. Eve intercepts d and forwards d^e to Alice.

Then Alice computes $k = d^{x_A}g^y_A = g^{kex_A}$ with Bob. Whereas Bob believes that he shares $k = c^{x_B}y^e_B = g^{kex_B}$ with Eve. Eve cannot compute the session key k. However, she can masquerade as Alice.

OneOfTwoSquareRoots(x_1, x_2)

Case: Peggy knows a square root y_1 of x_1 (the other case follows analogously):
 1. Peggy chooses $r_1, r_2 \in \mathbb{Z}^*_n$ and $e_2 \in \{0, 1\}$ at random and sets $a = (a_1, a_2) = (r_1^2, r_2^2x_2^{e_2})$. Peggy sends a to Vic.
 2. Vic chooses $e \in \{0, 1\}$ at random. Vic sends e to Peggy.
 3. Peggy computes

 $e_1 = e \oplus e_2,$
 $b = (b_1, b_2) = (r_1y_1^{e_1}, r_2)$

 and sends b, e_1, e_2 to Vic.
 4. Vic accepts, if and only if

 $e = e_1 \oplus e_2,$
 $b_1^2 = a_1x_1^{e_1}, b_2^2 = a_2x_2^{e_2}.$

The completeness, soundness and zero-knowledge properties are analogously proven as in Protocol 4.5.

3. a. Let $x \in \text{QNR}_n^{+1}$. $a = r^2x^\sigma \in \text{QR}_n \iff \sigma = 0$. Thus $\sigma = \tau$ and Vic will accept.
 b. Let $x \in \text{QR}_n$. Then $a = r^2x^\sigma \in \text{QR}_n$, for $\sigma \in \{0, 1\}, r \in \mathbb{Z}^*_n$. Thus τ is always 1 and prob($\sigma = \tau$) = 1/2. Thus a dishonest Peggy can convince Vic with probability 1/2 if $x \in \text{QR}_n$.
 c. Let V^* be a dishonest verifier defined by the following

Protocol 4.2.

PQR$_n$

1. V^* randomly chooses $r \in \mathbb{Z}^*_n$ with $(\frac{x}{n}) = 1$ and sends $a = r$ to Peggy.
2. Peggy computes $\tau := \begin{cases} 0 & \text{if } a \in \text{QR}_n \\ 1 & \text{if } a \notin \text{QR}_n \end{cases}$ and sends τ to Vic.
3. V^* outputs τ.

Note $\tau = 0$ if $r \in \text{QR}_n$ and $\tau = 1$ if $r \notin \text{QR}_n$. Thus V^* can decide after interaction with Peggy, whether a randomly chosen r is a quadratic residue. Without Peggy’s help he cannot do this according to the quadratic residuosity assumption (see Section 4.3.1 and Definition 6.11).

d. **Algorithm 4.3.**

```c
int S(int x)
1. select $r \in Z_n^*$ and $\sigma \in \{0, 1\}$ uniformly at random
2. return $(\tilde{a}, \tilde{\tau}) \leftarrow (r^2 x^\sigma, \sigma)$
```

By construction, the random variables $S(x)$ and $(P, V)(x)$ are identically distributed for $x \in \text{QNR}_n$.

e. Vic proofs to Peggy after step 1 that he knows a square root of a or of a/x by using the protocol of Exercise 2. He can only succeed, if he followed the protocol in step 1. Thus he is a honest verifier and d) applies.

4. The idea is as in Exercise 3e). The verifier proves that he follows the protocol in step 1, i.e., that he sends a message which he encrypted with the public key. For this purpose, he shows that he knows the e-th root of the message he transmitted.

To show that a prover Peggy knows the e-th root x of y, the following protocol may be used.

Protocol 4.4.

e-th root(y)

1. Peggy chooses $r \in Z_n^*$ at random and sets $a = r^e$. Peggy sends a to Vic.
2. Vic chooses $\sigma \in \{0, 1\}$ at random. Vic sends σ to Peggy.
3. Peggy computes $b = rx^\sigma$ and sends b to Vic, i.e., Peggy sends r, if $e = 0$, and rx, if $\sigma = 1$.
4. Vic accepts, if and only if $b^e = ay^\sigma$.

The completeness, soundness and zero-knowledge properties are analogously proven as in Protocol 4.5.

5. a. Alice commits to 0, if $c \in \text{QR}_n$ and to 1, if $c \notin \text{QR}_n$.

Note: $c \in \text{QR}_n \iff -c \notin \text{QR}_n$.

b. $c_1 c_2 = r_{1,r_2}^2 (-1)^{b_1 + b_2 mod 2} = (r_{1,r_2})^2 (-1)^{b_1 \oplus b_2}$

c. c_1 and c_2 commit to the same value, if $c_1 c_2 \in \text{QR}_n$. They commit to different values, if $c_1 c_2 \notin \text{QR}_n$. Both cases can be proven by zero-knowledge proofs (see Section 4.2.4 and Exercise 3).

6. The access structure can be realized, if P_1 gets three shares, P_2 two shares and P_3, P_4, P_5 and P_6 each get one share in a $(5, n)$-Shamir threshold scheme.

Introduction to Cryptography by H. Delfs and H. Knebl
7. Assume P_i has p_i shares of a (t,n)-Shamir threshold scheme. Then $p_1 + p_2 \geq t$ and $p_3 + p_4 \geq t$. Thus $p_1 + p_2 + p_3 + p_4 \geq 2t$. $p_1 + p_2 < t$ implies $p_3 + p_4 \geq t$. Thus $\{P_1, P_3\}$ or $\{P_2, P_4\}$ are also able to reconstruct the secret.

8. We use the notations of Section 4.5. The encryption scheme allows to encrypt every message $m = g^v, 0 \leq v \leq q - 1$. Thus, a voter could encrypt up to $(q - 1)/2$ “yes-” or “no-votes”. If an authority posts w_jg or w_jg^{-1}, the tally is decreased or increased by $\lambda_{i,j}$.

9. The voter V_j can duplicate the vote $c_i = (c_{i,1}, c_{i,2})$ of the voter V_i. For this purpose, he selects α and sets $c_j = (c_{i,1}g^\alpha, c_{i,2}h^\alpha)$. He has to prove that his vote is a correctly formed one, by the protocol OneOfTwoPairs (Protocol 4.20). We first discuss the case, where the interactive version of the proof is applied.

a. The voter V_j can derive from the voter V_i’s proof $(a, d, b) = OneOfTwoPairs(g, h, (y_1, z_1), (y_2, z_2))$, where

$$
y_1 = c_{i,1}, \ z_1 = c_{i,2}g, \ y_2 = c_{i,1}, \ z_2 = c_{i,2}g^{-1},$$

$$a = (a_1, a_2, a_3, a_4),$$

$$d = (d_1, d_2), \ b = (b_1, b_2),$$

the proof

$$(\tilde{a}, \tilde{d}, \tilde{b}) = OneOfTwoPairs(g, h, (\tilde{y}_1, \tilde{z}_1), (\tilde{y}_2, \tilde{z}_1)),$$

where

$$\tilde{y}_1 = y_1g^\alpha, \ \tilde{z}_1 = z_1h^\alpha$$

$$\tilde{y}_2 = y_2g^\alpha, \ \tilde{z}_2 = z_2h^\alpha$$

$$\tilde{a} = a, \ \tilde{d} = d,$$

$$\tilde{b} = (b_1 - d_1\alpha, b_2 - d_2\alpha).$$

b. With the non-interactive proof, the attack does not work. Replacing the argument $(y_i, z_i, i = 1, 2)$ of the hash function will cause a different output. Note, the hash function is assumed to be collision resistant. To duplicate a vote, an identical copy of the ballot must be used. However, it will be detected, if a ballot is posted twice.

10. Given a public key $pk = (n, g)$ and a ciphertext c, Peggy interactively proves to Vic that she knows a plaintext $m \in \mathbb{Z}_n$ and a randomness value $\rho \in \mathbb{Z}_n^*$ such that $c = E_{pk}(m, \rho) = g^m\rho^\alpha$. (m, ρ) is Peggy’s witness.

Let $r \in \mathbb{N}, r < \varphi(n)$ be a large number, e.g., $r := \sqrt{n}$.

©H. Delfs and H. Knebl
Protocol 4.5.
KnowledgeOfThePlaintext(c)

a. Peggy randomly chooses a plaintext \(m' \in \mathbb{Z}_n \) and a randomness \(\rho' \in \mathbb{Z}_n^* \), computes \(c' = E_{pk}(m', \rho') = g^{m' \rho'} \) and sends \(c' \) to Vic.

b. Vic randomly selects a challenge \(e \in \{0, 1, \ldots, r\} \) and sends \(e \) to Peggy.

c. Peggy computes \(\tilde{m} := em + m' \mod n \) and \(\tilde{\rho} := \rho^e \rho' \mod n \) and sends \(\tilde{m}, \tilde{\rho} \) to Vic.

d. Vic accepts if \(c^e c' = E_{pk}(\tilde{m}, \tilde{\rho}) = g^{\tilde{m} \tilde{\rho}} \).

The protocol is a special honest-verifier zero-knowledge proof of knowledge, as the following arguments show.

Obviously, the interactive proof is complete. To prove soundness, assume that a prover \(P^* \), honest or not, is able to convince Vic with probability \(> \frac{1}{r} \). Then, \(P^* \) is able to send an element \(c' \) in the first move, such that she is able to compute correct answers \((\tilde{m}_1, \tilde{\rho}_1) \) and \((\tilde{m}_2, \tilde{\rho}_2) \) for at least two distinct challenges \(e_1, e_2 \in \{1, \ldots, r\}, e_1 > e_2 \). Since Paillier is homomorphic, \(\tilde{m}_1 - \tilde{m}_2 \) is the plaintext \((e_1 - e_2) m \) in \(c^{e_1 - e_2} \). Therefore, \(P^* \) immediately derives

\[
 m = (\tilde{m}_1 - \tilde{m}_2) \cdot (e_1 - e_2)^{-1},
\]

which means that \(P^* \) is an honest prover, who knows the plaintext. If \((e_1 - e_2) \) were not a unit mod \(n \), then \(P^* \) would be able to crack the secret key by computing \(\gcd(e_1 - e_2, n) \).

Given a challenge \(e \), the following simulator \(S \) generates correctly distributed accepting transcripts \((c', e, \tilde{m}, \tilde{\rho}) \). \(S \) randomly generates elements \(\tilde{m} \in \mathbb{Z}_n, \tilde{\rho} \in \mathbb{Z}_n^* \) and sets \(c' := E_{pk}(\tilde{m}, \tilde{\rho}) = g^{\tilde{m} \tilde{\rho}} \). Thus, the protocol is a special honest-verifier zero-knowledge protocol.

BlindRSASig(m)

1. Vic randomly chooses \(r \in \mathbb{Z}_n^* \), computes \(m = r^m \) and sends it to Peggy.

2. Peggy computes \(\sigma = m^d \) and sends it to Vic.

3. Vic computes \(\sigma r^{-1} \) and gets the signature of \(m \).

12. a. \(ry^r g^{-s} = mg^k g^{ex} g^{-(xr+k)} = m \).

b. Choose any \(r, s \) with \(1 \leq r \leq p - 1 \) and \(1 \leq s < q - 1 \) and let \(m := ry^r g^{-s} \). Then \((m, r, s) \) is a signed message. This kind of attack is always possible, if the message can be recovered from the signature, as in the basic Nyberg–Rueppel scheme.

c. Use a collision-resistant hash function \(h \) and hash before encrypting, or, if you want to preserve the message recovery property, apply a suitable bijective redundancy function \(R \) to the message to be signed (see [MenOorVan96]).
Let \((m, r, s)\) be a valid signature. Without the first check, an attacker may sign messages \(\tilde{m}\) of his choice. He computes
\[
g^{k} = r m^{-1}
\]
by the extended Euclidean algorithm. Then, he uses the Chinese remainder theorem to determine a \(\tilde{r} \in \mathbb{Z}\) with
\[
\tilde{r} \equiv \tilde{m} g^k \mod p \quad \text{and} \quad \tilde{r} \equiv r \mod q.
\]
Then \((\tilde{m}, \tilde{r}, s)\) passes the verification, if
\[
1 \leq \tilde{r} \leq p - 1
\]
is not checked.

ProofRep\((g_1, g_2, y)\)

1. Peggy randomly chooses \(r_1, r_2 \in \mathbb{Z}_q\), computes
\[
a = g^{r_1} g^{r_2}
\]
and sends it to Vic.
2. Vic randomly chooses \(c \in \mathbb{Z}_q\) and sends it to Peggy.
3. Peggy computes
\[
b_i = r_i - c x, \quad i = 1, 2,
\]
and sends \((b_1, b_2)\) to Vic.
4. Vic accepts the proof, if
\[
a = g_1^{b_1} g_2^{b_2} y^c,
\]
otherwise, he rejects it.
1. Peggy randomly chooses $r_1, r_2 \in \mathbb{Z}_q$, computes $\pi = g_1^{r_1} g_2^{r_2}$ and sends it to Vic.

2. Vic randomly chooses $u \in \mathbb{Z}_q^*$, $v_1, v_2, w \in \mathbb{Z}_q$ and computes

 \begin{align*}
 a &= \pi^u g_1^{v_1} g_2^{v_2} y^w, \\
 c &= h(m||a), \tau = (c - w)u^{-1}.
 \end{align*}

 Vic sends τ to Peggy.

3. Peggy computes $b = (b_1, b_2) = (r_1 - cx_1, r_2 - cx_2)$ and sends it to Vic.

4. Vic verifies whether

 \[\pi = g_1^{b_1} g_2^{b_2} y^\tau, \]

 computes $b = (b_1, b_2) = (u\bar{b}_1 + v_1, u\bar{b}_2 + v_2)$ and gets the signature $\sigma(m) = (c, b)$ of m.

The verification condition for a signature (c, b) is $c = h(m||g_1^{b_1} g_2^{b_2} y^\tau)$.

Introduction to Cryptography by H. Delfs and H. Knebl
5. Probabilistic Algorithms

1. The desired Las Vegas algorithm works as follows:
 Repeat
 1. Compute \(y = A(x) \).
 2. Check by \(D(x, y) \), whether \(y \) is a correct solution for input \(x \).
 3. If the check yields 'yes', then return \(y \) and stop. Otherwise, go back to 1.

 The expected number of iterations is \(1/\text{prob}(A(x) \text{ correct}) \) (by Lemma B.12) and hence \(\leq P(|x|) \). The binary length of an output \(y \) is bounded by \(R(|x|) \). Thus, the running time of \(D(x, y) \) is bounded by \(S(|x| + R(|x|)) \).

2. We define the algorithm \(\tilde{A} \) on input \(x \) as follows:
 a. Let \(t(x) := \tilde{P}(|x|)^2Q(|x|) \).
 b. Compute \(A(x) t(x) \)-times, and obtain the results \(b_1, \ldots, b_{t(x)} \in \{0, 1\} \).
 c. Let
 \[
 \tilde{A}(x) := \begin{cases}
 +1 & \text{if } \frac{1}{t(x)} \sum_{i=1}^{t(x)} b_i \geq a \\
 0 & \text{if } \frac{1}{t(x)} \sum_{i=1}^{t(x)} b_i < a.
 \end{cases}
 \]

 From Corollary B.25 applied to the \(t(x) \) independent computations of \(A(x) \), we get for \(x \in \mathcal{L} \)
 \[
 \text{prob} \left(\frac{1}{t(x)} \sum_{i=1}^{t(x)} b_i < a \right) < \frac{P(|x|)^2}{4t(x)} < \frac{1}{Q(|x|)},
 \]
 and for \(x \notin \mathcal{L} \)
 \[
 \text{prob} \left(\frac{1}{t(x)} \sum_{i=1}^{t(x)} b_i \geq a \right) < \frac{P(|x|)^2}{4t(x)} < \frac{1}{Q(|x|)}.
 \]

3. a. The probability that \(A(x) \) returns at least one 1 during \(t \) executions of \(A(x) \) is 0 if \(x \notin \mathcal{L} \), and \(> 1 - (1 - 1/Q(|x|))^t \) if \(x \in \mathcal{L} \). For \(t \geq \ln(2)Q(|x|) \), we have \((1 - 1/Q(|x|))^t \leq 1/2 \) (see proof of Proposition 5.7).

 b. Consider an \(\mathcal{NP} \)-problem \(\mathcal{L} \) and a deterministic polynomial algorithm \(M(x, y) \) that answers the membership problem for \(\mathcal{L} \) with certificates of length \(\leq L(|x|) \). Selecting \(y \in \{0, 1\}^{L(|x|)} \) by coin tosses and calling \(M(x, y) \), we get a probabilistic polynomial algorithm \(A(x) \) with deterministic extension \(M(x, y) \). Conversely, a probabilistic polynomial algorithm \(A \) that decides the membership in \(\mathcal{L} \) yields a deterministic \(M \). These considerations show that a problem \(\mathcal{L} \) is in \(\mathcal{NP} \) if and only if there is a probabilistic polynomial algorithm \(A \) with values in \(\{0, 1\} \).
such that \(\text{prob}(A(x) = 1) > 0 \) if \(x \in \mathcal{L} \), and \(\text{prob}(A(x) = 1) = 0 \) if \(x \notin \mathcal{L} \).

Now, the inclusion \(\mathcal{RP} \subseteq \mathcal{NP} \) is obvious (to obtain this inclusion, only the 'conversely'-direction of our considerations is necessary).

4. Let \(A(x) \) be a Las Vegas algorithm for the membership in a \(\mathcal{ZPP} \)-problem \(\mathcal{L} \), and let \(P(|x|) \) be a polynomial bound for the expected running time of \(A \). We define a Monte Carlo algorithm \(\tilde{A}(x) \) as follows. We call \(A(x) \). If \(A(x) \) returns after less than \(P(|x|) \) steps, we set \(\tilde{A}(x) = A(x) \). Otherwise, let \(\tilde{A}(x) = 0 \). Then \(\tilde{A} \) is an algorithm for the membership in \(\mathcal{L} \), as it is required for \(\mathcal{RP} \)-problems.

5. Proposition 5.6 can be improved such that the probability of success of the algorithm \(\tilde{A} \) is exponentially close to 1. More precisely: By repeating the computation \(A(x) \) and by returning the most frequent result, we get a probabilistic polynomial algorithm \(\tilde{A} \) such that

\[
\text{prob}(\tilde{A}(x) = f(x)) > 1 - 2^{-Q(|x|)} \text{ for all } x \in X.
\]

The proof is completely analogous to the proof of Proposition 5.6. The Chernoff bound is used instead of Proposition 5.6 (which is a consequence of the Weak Law of Large Numbers B.24). The Chernoff bound implies that

\[
\text{prob} \left(\sum_{j=1}^{t} S_j > \frac{t}{2} \right) \geq 1 - 2e^{-\frac{t^2}{2P(|x|)^2}}.
\]

For \(t > \ln(2)P(|x|)^2(Q(|x|) + 1) \), we get the desired result.
6. One-Way Functions and the Basic Assumptions

1. Let $I_k := \{ n \in \mathbb{N} \mid n = pq, p, q \text{ distinct primes}, |p| = |q| = k \}$. The set of keys of security parameter k is $I_k = \{(n, e) \mid n \in I_k, e \in \mathbb{Z}_{\phi(n)}^* \}$.

Let p_k be the uniform distribution on I_k and let q_k be the distribution $i \leftarrow U(1^k)$, given by S. Then

$$p_k(n, e) = \frac{1}{|I_k|} \cdot \frac{1}{\text{aver}(\mathbb{Z}_{\phi(n)}^*)} \quad \text{and} \quad q_k(n, e) = \frac{1}{|I_k|} \cdot \frac{1}{|\mathbb{Z}_{\phi(n)}^*|},$$

where $\text{aver}(\mathbb{Z}_{\phi(n)}^*)$ is the average value taken over $n \in I_k$. As we observed in the proof of Proposition 6.6 (referring to Appendix A.2), $\varphi(x) > \frac{x}{6\log(x)}$. Hence,

$$\varphi(n) > |\mathbb{Z}_{\phi(n)}^*| = \varphi(\varphi(n)) > \frac{\varphi(n)}{c\log(k)}$$

(c a constant). This implies $q_k(n, e) \leq c\cdot\log(k)\cdot p_k(n, e)$. In particular, q_k is polynomially bounded by p_k.

b. Analogous to a).

2. The number of primes of length k is of order $2^k/k$ (by the Prime Number Theorem A.82). Thus, we expect to get a prime after $O(k)$ iterations if we randomly choose k-bit strings and apply a probabilistic primality test (see Lemma B.12). A probabilistic primality test takes $O(k^3)$ steps (step = binary operation) and therefore, the expected running time to generate a random prime of length k is $O(k^4)$. To choose a random $e \in \mathbb{Z}_{\phi(n)}^*$ and to check, whether it is a unit (by Euclid’s algorithm A.5), takes $O(k^2)$ steps. The probability of getting a unit is $\varphi(\varphi(n))/\varphi(n)$, with $\varphi(n) = (p - 1)(q - 1)$. Let $d := \{\text{average}_{n \in I_k} \varphi(n)/\varphi(\varphi(n))\}$. In the uniform sampling algorithm of Proposition 6.8, we expect to get a key after generating d moduli $n = pq$ and d exponents. Applying the admissible key generator from Exercise 1, we expect to get a key after generating one modulus and d exponents. Thus, the expected running time of the uniform key generator of Proposition 6.8 is about $d \times$-times the expected running time of the admissible key generator from Exercise 1. We have $d \leq 6\log(2k)$ (Appendix A.2).

3. f is certainly not a strong one-way function: Half of the elements of X_j are even. For every $(x, y) \in D_n$, with x or y is even and $xy < 2^n - 1$, a pre-image $(2, x/2, y/2)$ of $f_n(x, y)$ is immediately computed.

Let $\hat{D}_n := \{(x, y) \in D_n \mid x, y \text{ are primes with } |x| = |y| = |n/2|\}$. We have (by the Prime Number Theorem A.82)

$$|\hat{D}_n| \approx \left(\frac{2^{|n/2|} - 1}{|n/2|} - 1\right)^2 \geq \frac{2^n - 3}{(n - 1)/2^2} \geq \frac{2^n - 3}{n^2} = \frac{2^n}{2n^2}.$$
On the other hand, \(|D_n| = \sum_{j=2}^{n-2} 2^{j} 2^{n-j} < n2^n\) and hence
\[
\frac{|\tilde{D}_n|}{|D_n|} \geq \frac{1}{2n^3}.
\]

By the factoring assumption, the pre-image of \(xy\) cannot be efficiently computed with a non-negligible probability for \((x, y) \in \tilde{D}_n\). Thus, the probability of success of an adversary algorithm is \(\leq 1 - 1/2n^3\).

4. Let \(A_1\) be the algorithm that calls \(A\) and then returns the difference \((a_1 - a'_1, \ldots, a_r - a'_r)\) of \(A\)'s outputs. As we already observed in the proof of Proposition 4.43, \(A_1\) computes a non-trivial representation \(1 = \prod_{j=1}^r g_j^{a_j}\) of 1 if and only if \(A\) computes two distinct representations \(\prod_{j=1}^r g_j^{a_j} = \prod_{j=1}^r g_j^{a'_j}\) of the same element in \(G_q\).

To compute the discrete logarithm of an element \(y \in G_q\) with respect to \(g\), we use the algorithm \(B\) (see the algorithm given in the proof of Proposition 4.43):

Algorithm 6.1.

```plaintext
int B(int p, q, g, y)
1   if y = 1
2      then return 0
3   else select i \(\in\) \(\{1, \ldots, r\}\) and
4      u_j \(\in\) \(\{1, \ldots, q - 1\}\), 1 \(\leq\) j \(\leq\) r, uniformly at random
5      g_i \(\leftarrow\) y^{u_i}
6      g_j \(\leftarrow\) g^{u_j}, 1 \(\leq\) j \(\neq\) i \(\leq\) r, is chosen at random
7      \((a_1, \ldots, a_r) \leftarrow A(g_1, \ldots, g_r)
8      if a_i \(\neq\) 0 mod q
9         then return x \(\leftarrow\) \(-(a_i u_i)^{-1} \left(\sum_{j \neq i} a_j u_j\right) \mod q
10        else return 0
```

If \(A_1\) returns a non-trivial representation and if \(a_i \neq 0\) (modulo q), then
\[
y^{-u_i a_i} = \prod_{j \neq i} g_j^{a_j u_j},
\]
and \(B\) correctly returns \(\log_g(y)\) of \(y\) with respect to the base \(g\).

If \(y \neq 1\), then \(y\) is a generator of \(G_q\) and \(y^{u_i}\) is an element which is randomly and uniformly chosen from \(G_q \setminus \{1\}\), and this random choice is independent of the choice of \(i\). If \(A_1\) returns a non-trivial representation of 1, then at least one \(a_i \neq 0\) mod q and therefore, the probability that we get a position \(i\) with \(a_i \neq 0\) mod q by the random choice of \(i\), is \(\geq \frac{1}{r} \geq \frac{1}{T(|p|)}\). Thus,
\[
\text{prob}(B(p, q, g, y) = \log_g(y)) \geq \text{prob}(A(p, q, g_1, \ldots, g_r) = (a_1, \ldots, a_r) \neq 0, 1 = \prod_{j=1}^r g_j^{a_j}):
\]

Introduction to Cryptography by H. Delfs and H. Knebl
Let $I_k \equiv \{ (n, e) \mid n = pq, p, q \text{ distinct primes } \mid |p| = |q| = k, e \in \mathbb{Z}_{\varphi(n)}^* \}$ be the set of public RSA keys with security parameter k. By Exercise 1, the RSA assumption remains valid if we replace $(n, e) \equiv I_k$ by $n \equiv J_k, e \equiv \mathbb{Z}_{\varphi(n)}$. In the following sequence of distributions, each distribution polynomially bounds its successor.

a. $n \equiv J_k, e \equiv \mathbb{Z}_{\varphi(n)}$

b. $n \equiv J_k, e \equiv \{ f < 2^{2k} \mid f \text{ prime to } \varphi(n) \}$

c. $n \equiv J_k, \tilde{p} \equiv \{ f \in \text{Primes}_{\leq 2k} \mid f \text{ does not divide } \varphi(n) \}$

The example after Definition B.33, shows that a) bounds b), since the number of primes of binary length $\leq 2k$ is about $\frac{2^k}{k}$ (Theorem A.82). By Proposition B.34, we conclude that the RSA assumption remains valid if we replace $(n \equiv J_k, e \equiv \mathbb{Z}_{\varphi(n)})$ by $(n \equiv J_k, \tilde{p} \equiv \{ f \in \text{Primes}_{\leq 2k} \mid f \text{ does not divide } \varphi(n) \})$. By Lemma B.32, this distribution - we call it q - can be replaced by $(n \equiv J_k, \tilde{p} \equiv \text{Primes}_{\leq 2k})$, since both distributions are polynomially close. Namely, we have for large k (up to some constant)

$$|\{ f \in \text{Primes}_{\leq 2k} \mid f \text{ does not divide } \varphi(n) \}| \geq |\text{Primes}_{\leq 2k}| - \log_2(2k),$$

hence by Theorem A.82

$$\left\lfloor q(\tilde{p}, n) = \frac{1}{|J_k|} \cdot \frac{1}{|\text{Primes}_{\leq 2k}|} \right\rfloor$$

$$\leq \frac{1}{|J_k|} \cdot \frac{1}{|\text{Primes}_{\leq 2k}|} \cdot \left(\frac{|\text{Primes}_{\leq 2k}|}{|\text{Primes}_{\leq 2k}| - \log_2(2k)} - 1 \right)$$

$$\approx \frac{1}{|J_k|} \cdot \frac{1}{|\text{Primes}_{\leq 2k}|} \left(\frac{2^{2k}}{2k \log_2(2k)} - 1 \right)$$

$$\approx \frac{1}{|J_k|} \cdot \frac{1}{|\text{Primes}_{\leq 2k}|} \left(\frac{2k \log_2(2k)}{2^{2k}} \right) \approx \frac{k}{2^{2k}} \cdot \frac{2k \log_2(2k)}{2^{2k}} \leq \frac{k^5}{2^{6k}}.$$
Since the number of tuples \((\tilde{p}, n)\) is of order \(O\left(\frac{2^k}{k^2}\right)\), the polynomial closeness follows.

Finally, by Theorem A.84, we have for a prime \(\tilde{p}\) (up to some constant)
\[
|\{f \in \text{Primes}_k \mid \tilde{p} \text{ divides } f - 1\}| \approx \frac{1}{\tilde{p} - 1} \frac{2^k}{k} \leq \frac{2^k}{2k^2},
\]
hence
\[
|J_{k,\tilde{p}}| \geq \frac{9\cdot2^k}{4k^2} \text{ and then } 4 \cdot |J_{k,\tilde{p}}| \geq |J_k| \approx \frac{2^k}{2k^2}.
\]
We see that \((\tilde{p} \not\in J_k, \tilde{p} \not\in \text{Primes}_{\leq 2k})\) polynomially bounds \((\tilde{p} \not\in J_k, \tilde{p} \not\in \text{Primes}_{\leq 2k}, n \not\in J_{k,\tilde{p}})\). This finishes the proof.

6. Let \(b \in \{0, 1\}\). Assume that there is a positive polynomial \(P\), such that
\[
\Pr (B_i(x) = b : i \leftarrow K(1^k), x \leftarrow D_i) = 1 - \frac{1}{P(k)},
\]
for infinitely many \(k\). Then the constant algorithm \(A(i, y)\) that always returns \(b\) successfully computes the hard-core bit
\[
\Pr (A(i, f_i(x)) = B_i(x) : i \leftarrow K(1^k), x \leftarrow D_i) = \Pr (B_i(x) = b : i \leftarrow K(1^k), x \leftarrow D_i) \geq \frac{1}{2} + \frac{1}{P(k)},
\]
a contradiction.

7. Assume there is an algorithm \(A\) with
\[
\Pr (A(i, f_i(x), B_i(x)) = 1 : i \leftarrow K(1^k), x \leftarrow D_i) = \Pr (A(i, f_i(x), z) = 1 : i \leftarrow K(1^k), x \leftarrow D_i, z \leftarrow \{0, 1\}) > \frac{1}{P(k)}
\]
for some positive polynomial \(P\) and for \(k\) in an infinite subset \(\mathcal{K}\) of \(\mathbb{N}\) (Replacing \(A\) by \(1 - A\), if necessary, we may omit the absolute value).

Let \(\tilde{A}\) be the following algorithm with inputs \(i \in I, y \in R_i\):

a. Randomly choose a bit \(b \leftarrow \{0, 1\}\).

b. If \(\tilde{A}(i, y, b) = 1\), then return \(b\), else return \(1 - b\).

Applying Lemma B.13 we get
\[
\Pr (\tilde{A}(i, f_i(x)) = B_i(x) : i \leftarrow K(1^k), x \leftarrow D_i) = \frac{1}{2} + \Pr (\tilde{A}(i, f_i(x)) = b : i \leftarrow K(1^k), x \leftarrow D_i | B_i(x) = b)
\]
\[
= \frac{1}{2} + \Pr (A(i, f_i(x), B_i(x)) = 1 : i \leftarrow K(1^k), x \leftarrow D_i) - \Pr (A(i, f_i(x), b) = 1 : i \leftarrow K(1^k), x \leftarrow D_i, b \leftarrow \{0, 1\}) > \frac{1}{2} + \frac{1}{P(k)}.
\]

Introduction to Cryptography by H. Delfs and H. Knebl
6. One-Way Functions and the Basic Assumptions

for the infinitely many \(k \in \mathcal{K} \). Hence, \(B \) is not a hard-core predicate.

Conversely, if \(\tilde{A}(i, y) \) is a probabilistic polynomial algorithm with

\[
\operatorname{prob}(\tilde{A}(i, f_i(x)) = B_i(x) : i \leftarrow K(1^k), x \leftarrow D_i) > \frac{1}{2} + \frac{1}{P(k)}
\]

for infinitely many \(k \), then the algorithm \(A \) with

\[
A(i, y, z) := \begin{cases} 1 & \text{if } z = \tilde{A}(i, y), \\ 0 & \text{else.} \end{cases}
\]

successfully distinguishes between the distributions.

8. The analogous proposition is:

The following statements are equivalent.

a. For every probabilistic polynomial algorithm \(A \) with inputs \(i \in \mathcal{I}, x \in X_i \) and output in \(\{0, 1\} \) and every positive polynomial \(P \), there is a \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \)

\[
| \operatorname{prob}(A(i, x) = 1 : i \leftarrow I_k, x \leftarrow X_i) \\
- \operatorname{prob}(A(i, x) = 1 : i \leftarrow I_k, x \leftarrow X_i) | \leq \frac{1}{P(k)}
\]

b. For every probabilistic polynomial algorithm \(A \) with inputs \(i \in \mathcal{I}, x \in X_i \) and output in \(\{0, 1\} \) and all positive polynomials \(Q, R \) there is a \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \)

\[
\operatorname{prob}\{ i \in I_k \mid | \operatorname{prob}(A(i, x) = 1 : x \leftarrow X_i) \\
- \operatorname{prob}(A(i, x) = 1 : x \leftarrow X_i) | > \frac{1}{Q(k)}\} \leq \frac{1}{R(k)}
\]

The proof now runs in the same way as the proof of Proposition 6.17. The main difference is that we need an algorithm \(\text{Sign}(i) \) which computes the sign of

\[
\operatorname{prob}(A(i, x) = 1 : x \leftarrow X_i) - \operatorname{prob}(A(i, x) = 1 : x \leftarrow X_i)
\]

with high probability if the absolute value of this difference is \(\geq \frac{1}{\tilde{T}(k)} \) (with \(\tilde{T} \) a polynomial). This algorithm is constructed analogously. We use the fact that the probabilities can be approximately computed with high probability by a probabilistic polynomial algorithm (Proposition 6.18).

9. see [GolMic84].
7. Bit Security of One-Way Functions

1.

\[17 \in \text{QR}_p, \]
\[\text{PSqrt}(17) = 13 \notin \text{QR}_p, 13 \cdot 2^{-1} = 16 \]
\[\text{PSqrt}(16) = 4 \in \text{QR}_p \]
\[\text{PSqrt}(4) = 2 \notin \text{QR}_p, 2 \cdot 2^{-1} = 1 \]
\[\text{PSqrt}(1) = 1 \in \text{QR}_p \]

Thus we have \(\text{Log}_{p,g}(17) = 01010 \) (in binary encoding).

2. Algorithm 7.1.

```cpp
int BinSearchLog(int p, g, y)
1 int : l, r, i
2 l ← 0; r ← p − 1
3 while l ≤ r do
4 i ← div (l + r)
5 if A1(p, g, y) = 1
6 then l ← i
7 else r ← i + 1
8 y ← y^2
9 return l
```

3. a. We compute the \(t \) least-significant bits as in the proof of Proposition 7.5. Let \(k = |p|, y = g^{x_{k-1} \ldots x_0}, x_i \in \{0, 1\}, i = 0, \ldots, k − 1 \). The bit \(x_0 \) is 0, if and only if \(y \in \text{QR}_p \) (Proposition A.55). This condition can be tested with the criterion of Euler for quadratic residuosity (Proposition A.58).

We replace \(y \) by \(yg^{-1} \), if \(x_0 = 1 \). Thus, we can assume \(x_0 = 0 \). We get the square roots \(y_1 = g^{x_{k-1} \ldots x_1} \) and \(y_2 = g^{x_{k-1} \ldots x_1+(p-1)/2} \) of \(y \).

Since \(p − 1 = 2^t q, q \) odd, the \(t \) least-significant bits of \(p − 1 \) are 0.

\[\log y_1 \text{ and } \log y_2 \text{ coincide in the } t \text{ least-significant bits (} t \geq 1 \). \]

Algorithm 7.2.

```cpp
int A(int p, g, x)
1 d ← ε
2 for c ← 0 to \( t \) − 1 do
3 if x ∈ QR_p
4 then d ← d[0]
5 else d ← d[1]
6 x ← xg^{-1}
7 x ← \text{Sqrt}(p, g, x)
8 return d
```

Introduction to Cryptography by H. Delfs and H. Knebl
b. Let \(\{u, v\} = \text{Sqrt}(y) \). Then \(\text{Lsb}_{t-1}(\log_{p,g}(u)) \neq \text{Lsb}_{t-1}(\log_{p,g}(v)) \) (the logarithms differ by \(\frac{p-1}{2} \)). Observe that you can compute these bits by a).

Algorithm 7.3.

```c
int A(int p, g, y)
1    \{u, v\} ← Sqrt(y)
2    if A1(p, g, y) = Lsb_{t-1}(\log_{p,g}(u))
3        then return u
4    else return v
```

A computes the principal square root of \(y \). The assertion now follows by Proposition 7.5.

c. Let \(P \) be a positive polynomial and \(A_1 \) be a probabilistic polynomial algorithm such that

\[
\text{prob}(A_1(p, g, g^x) = \text{Lsb}_t(x) : x ∈ \mathbb{Z}_{p-1}) ≥ \frac{1}{2} + \frac{1}{P(k)},
\]

where \(p \) is an odd prime, \(p = 2^t q, q \) odd, and \(g \) is a primitive root \(\text{mod} p \). As in b) we get a probabilistic polynomial algorithm \(A \) such that

\[
\text{prob}(A(p, g, y) = \text{PSqrt}_{p,g}(y) : y \leftarrow \text{QR}_n) ≥ \frac{1}{2} + \frac{1}{P(k)}.
\]

This contradicts the discrete logarithm assumption (see Theorem 7.7).

4. a. Let \(p - 1 = 2^t q, q \) odd, \(y = g^x \). Compute the \(t \) least-significant bits of \(x \) by the Algorithm of Exercise 7.2. Guess the next \(j - t \) bits from \(x \) (note there are only polynomially many, namely \(O(k) \), alternatives). Thus, we can assume that the \(j \) least-significant bits of \(x \) are known.
Algorithm 7.4.
\[
\begin{align*}
\text{int } & A(\text{int } p, g, y) \\
1 & \ L_j \leftarrow j \text{ least-significant bits of } x \\
2 & \ d \leftarrow L_j \\
3 & \ \text{for } c \leftarrow j \text{ to } k - 1 \text{ do} \\
4 & \ b \leftarrow A_1(p, g, y, L_j) \\
5 & \ \text{if } \text{Lsb}(L_j) = 1 \\
6 & \ y \leftarrow yg^{-1} \\
7 & \ \{u, v\} \leftarrow \text{Sqrt}(p, g, y) \\
8 & \ \text{if } \text{Lsb}(\log_{p,g}(u)) = \text{Lsb}(L_j) \\
9 & \ y \leftarrow u \\
10 & \ \text{else } y \leftarrow v \\
11 & \ L_j \leftarrow b||\text{Lsb}_{j - 1}(L_j) \ldots \text{Lsb}_{1}(L_j) \\
12 & \ d \leftarrow b||d \\
13 & \ \text{return } d
\end{align*}
\]

b. The probability of success of A_1 can be increased as in Lemma 7.8. Observe that you can compute \text{Lsb}_j(x) from \text{Lsb}_j(x + r)$, where r is randomly chosen, if $x + r \leq p - 1$. Use this to compute \text{Lsb}_j(x) with probability almost 1 for small values of x. Then continue as in the proof of Theorem 7.7 to prove statement b).

5. Assume there is a positive polynomial $P \in \mathbb{Z}[X]$ and an algorithm A_1 such that
\[
\text{prob}(A_1(p, g, \text{Lsb}_t(x), \ldots, \text{Lsb}_{t + j - 1}(x), g^x)) = \text{Lsb}_{t + j}(x) : (p, g) \leftarrow I_k, x \leftarrow \mathbb{Z}_{p - 1}) > \frac{1}{2} + \frac{1}{P(k)}.
\]
for infinitely many k. By Proposition 6.17, there are polynomials Q, R, such that
\[
\text{prob}\left\{(p, g) \in I_k \mid \text{prob}(A_1(p, g, \text{Lsb}_t(x), \ldots, \text{Lsb}_{t + j - 1}(x), g^x)) = \text{Lsb}_{t + j}(x) : x \leftarrow \mathbb{Z}_{p - 1}) > \frac{1}{2} + \frac{1}{Q(k)}\right\} > \frac{1}{R(k)},
\]
for infinitely many k. From the preceding Exercise 4, we conclude that there is an algorithm A_2 and a positive polynomial $S \in \mathbb{Z}[X]$ such that
\[
\text{prob}\left\{(p, g) \in I_k \mid \text{prob}(A_2(p, g, g^x) = x : x \leftarrow \mathbb{Z}_{p - 1}) \geq 1 - \frac{1}{S(k)}\right\} > \frac{1}{R(k)},
\]
for infinitely many k. By Proposition 6.3, there is a positive polynomial $T \in \mathbb{Z}[X]$ such that

Introduction to Cryptography by H. Delfs and H. Knebl
prob(A_2(p, g, g^x) = x : (p, g) \in I_k, x \in \mathbb{Z}_{p-1}) > \frac{1}{T(k)},

for infinitely many k, a contradiction to the discrete logarithm assumption.

6.

<table>
<thead>
<tr>
<th>t</th>
<th>a_t</th>
<th>u_t</th>
<th>a_t x</th>
<th>Lsb(a_t x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>0.5</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>0.75</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>0.875</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>0.9375</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>0.46875</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>0.234375</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus we have a = 5, u = \frac{15}{64}.

7.

<table>
<thead>
<tr>
<th>t</th>
<th>a_t</th>
<th>u_t</th>
<th>returned bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>196</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>49</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>220</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>110</td>
<td>0.125</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>0.5625</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>223</td>
<td>0.78125</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>307</td>
<td>0.890625</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>349</td>
<td>0.9453125</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>370</td>
<td>0.47265625</td>
<td>1</td>
</tr>
</tbody>
</table>

We get a = 370, ax = \lfloor \frac{121}{256} \cdot 391 + 1 \rfloor and x = a^{-1}ax = 196.

8. Observe that

Msb(x) = Lsb(2x) and
Lsb(x) = Msb(2^{-1}x).

Thus, an algorithm A(n, e, y) computing Lsb(x) can be used to compute Msb(x) (Msb(x) = A(n, e, 2^ey)) and vice versa.

10. Let \(y = x^c \). Observe that \(2^c y = (2x)^c \).

11. Algorithm 7.5.

\[
\text{int } RSA^{-1}(\text{int } y) \\
1 \quad \text{for } i \leftarrow 1 \text{ to } k - 1 \text{ do} \\
2 \quad \text{if } \text{LsbRSA}^{-1}(y) = 0 \\
3 \quad \quad \text{then } \text{LSB}[i] \leftarrow 0 \\
4 \quad \quad y \leftarrow y2^{-c} \text{ mod } n \\
5 \quad \text{else } \text{LSB}[i] \leftarrow 1 \\
6 \quad y \leftarrow (n - y)2^{-c} \text{ mod } n \\
7 \quad t[k] \leftarrow \text{LsbRSA}^{-1}(y); t[1] = \ldots = t[k - 1] = 0 \\
8 \quad \text{for } i \leftarrow k - 1 \text{ downto } 1 \text{ do} \\
9 \quad \quad t \leftarrow \text{Shift}(t) \\
10 \quad \text{if } \text{LSB}[i] = 1 \\
11 \quad \quad \text{then } t \leftarrow \text{Delta}(n, t, k - i + 1) \\
12 \quad \text{return } t
\]

\text{Shift}(t) \text{ returns the bits of } t, \text{ shifted one position to the left, filling the emptied bit with 0. Delta}(s, t, i) \text{ returns for } t \leq s \text{ the } i \text{ least-significant bits of } s - t. \text{ The remaining bits are 0.}

12. a. We define \(L_j : \mathbb{Z}_n^* \rightarrow \{0, 1\}^j, \ x \mapsto x \text{ mod } 2^j \).

We get the RSA-inversion by rational approximation by using the equations

\[
\begin{align*}
 a_0 &= 1, & u_0 &= 0, \\
 a_t &= 2^{-1}a_{t-1}, & u_t &= \frac{1}{2} (u_{t-1} + \text{Lsb}(a_{t-1}x)).
\end{align*}
\]

We have

\[
L_{j-1}(\overline{a_t}x) = \frac{1}{2} L_j(\overline{a_{t-1}}x + \text{Lsb}(\overline{a_{t-1}}x)n),
\]

and we compute \(L_j(\overline{a_t}x) \) for \(t \geq 0 \) by

\[
\text{Guess } L_j(\overline{a_t}x), \\
L_j(\overline{a_t}x) = \text{Lsb}_j(\overline{a_t}x)2^{j-1} + \frac{1}{2} L_j(\overline{a_{t-1}}x + \text{Lsb}(\overline{a_{t-1}}x)n).
\]

and get

Introduction to Cryptography by H. Delfs and H. Knebl
Algorithm 7.6.

```latex
\text{int } A_2(\text{int } n, e, y) \\
1 \quad a \leftarrow 1, u \leftarrow 0 \\
2 \quad \text{guess } Lst_j \leftarrow L_j(a_0x) \\
3 \quad \text{for } t \leftarrow 1 \text{ to } k \text{ do} \\
4 \quad \quad u \leftarrow \frac{1}{2}(u + \text{Lsb}(Lst_j)) \\
5 \quad \quad a \leftarrow 2^{-j}a \mod n \\
6 \quad Lst_j \leftarrow A_1(n, e, a^ey \mod n)2^{j-1} + \frac{1}{2}(Lst_j + \text{Lsb}(a_{t-1}x)n) \\
7 \quad \text{return } a^{-1}[un + 1] \mod n
```

b. With the notations from the proof of Theorem 7.14 we have

\[A_{t,i} = a_t + ia_{t-1} + b = (1 + 2t)a_t + b, \]
\[W_{t,i} = [u_t + iu_{t-1} + v]. \]

and if \(W_{t,i} = q \) (see proof of proof of Theorem 7.14) we have

\[\frac{A_{t,i}x}{W_{t,i}} = \frac{a_t x + ia_{t-1} x + bx}{W_{t,i}}. \]

Thus, we get

\[L_j(\frac{A_{t,i}x}{W_{t,i}}) = L_j(\frac{a_t x}{W_{t,i}}) + L_j(\frac{ia_{t-1} x}{W_{t,i}}) + L_j(\frac{bx}{W_{t,i}}) - L_j(W_{t,i}n) \mod 2^j \]

and

\[\text{Lsb}_j(\frac{A_{t,i}x}{W_{t,i}})2^{j-1} + L_j(\frac{A_{t,i}x}{W_{t,i}}) = \]
\[\text{Lsb}_j(\frac{a_t x}{W_{t,i}})2^{j-1} + L_j(\frac{a_t x}{W_{t,i}}) + L_j(\frac{ia_{t-1} x}{W_{t,i}}) + L_j(\frac{bx}{W_{t,i}}) - \]
\[L_j(W_{t,i}n) \mod 2^j, \quad \text{hence} \]
\[\text{Lsb}_j(\frac{a_t x}{W_{t,i}})2^{j-1} = \]
\[\text{Lsb}_j(\frac{A_{t,i}x}{W_{t,i}})2^{j-1} + L_j(\frac{A_{t,i}x}{W_{t,i}}) - L_j(\frac{a_t x}{W_{t,i}}) + L_j(\frac{ia_{t-1} x}{W_{t,i}}) - L_j(\frac{bx}{W_{t,i}}) + L_j(W_{t,i}n) \mod 2^j. \]

We use the last equation to get \(\text{Lsb}_j(\frac{a_t x}{W_{t,i}}) \) by a majority decision computing \(\text{Lsb}_j(\frac{A_{t,i}x}{W_{t,i}}) \) by algorithm \(A_1 \). Observe that the other terms of the right side of the equation are known. \(L_{j-1}(\frac{a_t x}{W_{t,i}}) \) and \(L_{j-1}(\frac{A_{t,i}x}{W_{t,i}}) \) can be recursively computed from \(L_j(\frac{a_{t-1} x}{W_{t,i}}) \) and \(L_j(\frac{a_t x}{W_{t,i}}) \):

\[L_{j-1}(\frac{a_t x}{W_{t,i}}) = \frac{1}{2}(L_j(\frac{a_{t-1} x}{W_{t,i}} + \text{Lsb}(\frac{a_{t-1} x}{W_{t,i}})n), \]
\[L_{j-1}(\frac{A_{t,i}x}{W_{t,i}}) = (1 + 2t)L_j(\frac{a_t x}{W_{t,i}}) + L_j(\frac{bx}{W_{t,i}}) \mod 2^{j-1}. \]

Initially we have to guess \(L_j(\frac{a_t x}{W_{t,i}}) \) and \(L_j(\frac{bx}{W_{t,i}}) \). This is polynomial in \(k \), because \(j \leq \lfloor \log_2(2k) \rfloor \).

We can modify the Algorithm from Lemma 7.15 to get an algorithm which computes \(L_j(a_t x) \) with probability almost 1. From \(L_j(a_t x) \) we can easily derive \(\text{Lsb}(a_t x) \), and we can use \(\text{Lsb}(a_t x) \) in Algorithm 7.17 and continue as in Section 7.2.

13. The proof is analogous to the proof of Exercise 5.

© H. Delfs and H. Knebl
8. One-Way Functions and Pseudorandomness

1. If $\hat{A}(i, z)$ is a probabilistic polynomial algorithm that distinguishes between the sequences generated by $\pi \circ G$ and true random sequences (see Definition 8.2), then $A(i, z) : (i, z) \mapsto \hat{A}(i, \Pi(i, z))$ distinguishes the sequences generated by G from true random sequences.

2. Examples can be constructed by one-way permutations $f = (f_i : D_i \rightarrow D_i)_{i \in I}$ with hard-core predicate B, like the RSA family. Consider the pseudorandom generator G with $G_i(x) := (f_i(x), B_i(x))$, which generates from a randomly chosen seed $x \leftarrow D_i$ a pseudorandom sequence of length $|x| + 1$. G is computationally perfect, by Exercise 7 in Chapter 6. Let π be the permutation $\pi_i(y, b) := (f_i^{-1}(y), b)$ ($y \in D_i, b \in \{0, 1\})$. Then $\pi_i(G_i(x)) = (x, B(x))$, and we see that $\pi \circ G$ is not computationally perfect (since $B(x)$ is computable from x).

3. The proof is an immediate consequence of Exercise 1 (consider the permutation $(x_1, \ldots, x_{i(k)}) \mapsto (x_{i(k)}, \ldots, x_1)$ and Yao’s Theorem 8.7.

4. Assume there is a probabilistic polynomial statistical test $A(i, z)$ and a positive polynomial R such that

$$\text{prob}(A(i, G_i^l(x)) = 1 : i \leftarrow K(1^k), x \leftarrow \{0, 1\}^{Q(k)})$$
$$- \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0, 1\}^{Q(k)+l}) > \frac{1}{R(k)},$$

for k in an infinite subset K of \mathbb{N} (replacing A by $1 - A$ if necessary we may drop the absolute value).

For $k \in K$ and $i \in I_k$ we consider the following sequence of distributions

$$d_{i,0}, d_{i,1}, \ldots, d_{i,l}$$

on $\{0, 1\}^m$, where $m = m(k) := Q(k) + l$.

$$d_{i,0} = \{(b_1, \ldots, b_l, x) : (b_1, \ldots, b_l) \leftarrow \{0, 1\}^l, x \leftarrow \{0, 1\}^{Q(k)}\}$$
$$d_{i,1} = \{(b_1, \ldots, b_{l-1}, G_i^l(x)) : (b_1, \ldots, b_{l-1}) \leftarrow \{0, 1\}^{l-1}, x \leftarrow \{0, 1\}^{Q(k)}\}$$
$$d_{i,2} = \{(b_1, \ldots, b_{l-2}, G_i^l(x)) : (b_1, \ldots, b_{l-2}) \leftarrow \{0, 1\}^{l-2}, x \leftarrow \{0, 1\}^{Q(k)}\}$$
$$\vdots$$
$$d_{i,r} = \{(b_1, \ldots, b_{l-r}, G_i^r(x)) : (b_1, \ldots, b_{l-r}) \leftarrow \{0, 1\}^{l-r}, x \leftarrow \{0, 1\}^{Q(k)}\}$$
$$\vdots$$
$$d_{i,l} = \{G_i^l(x) : x \leftarrow \{0, 1\}^{Q(k)}\}.$$

5 We use the following notation: $\{S(x) : x \leftarrow X\}$ denotes the image of the distribution on X under $S : X \rightarrow Z$, i.e., the probability of $z \in Z$ is given by the probability for z appearing as $S(x)$ if x is randomly selected from X.
$d_{i,0}$ is the uniform distribution, $d_{i,l}$ is the distribution induced by G^d_i. For $k \in \mathcal{K}$, we have

$$
\frac{1}{R(k)} < \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)
- \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)
= \sum_{r=0}^{l-1} (\text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)
- \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)).
$$

Define the algorithm \tilde{A} as follows:

a. Randomly choose r, with $0 \leq r < l$.

b. Choose random bits $b_1, b_2, \ldots, b_{l-r-1}$.

c. For $z = (z_1, \ldots, z_{Q(k)+1}) \in \{0,1\}^{Q(k)+1}$ let

$$
\tilde{A}(i, z) := A(i, b_1, \ldots, b_{l-r-1}, z_1, G^d_i((z_2, \ldots, z_{Q(k)+1}))).
$$

We have

$$
\text{prob}(\tilde{A}(i, G_i(x)) = 1 : i \leftarrow K(1^k), x \leftarrow \{0,1\}^{Q(k)})
- \text{prob}(\tilde{A}(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^{Q(k)+1})
= \sum_{r=0}^{l-1} \text{prob}(r) \cdot (\text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)
- \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)))
= \frac{1}{l} \sum_{r=0}^{l-1} (\text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)
- \text{prob}(A(i, z) = 1 : i \leftarrow K(1^k), z \leftarrow \{0,1\}^m)))
> \frac{1}{IR(k)},
$$

for the infinitely many $k \in \mathcal{K}$. This contradicts the assumption that G is computationally perfect.

5. The proof runs in the same way as the proof of Yao’s Theorem 8.7. An additional input $y \in Y_i$ has to be added to the algorithms A and \tilde{A} and the probabilities

$$
\text{prob}(\tilde{A}(i, f_i(x), z) = \ldots : i \leftarrow K(1^k), x \leftarrow X_i, z \leftarrow \ldots)
$$

must also be taken over $x \leftarrow X_i$. The distributions $p_{i,r}$ are modified to

$$
p_{i,r} = \{(f_i(x), G_{i,1}(x), G_{i,2}(x), \ldots, G_{i,r}(x), b_{r+1}, \ldots, b_{Q(k)} : (b_{r+1}, \ldots, b_{Q(k)}) \leftarrow \{0,1\}^{Q(k)-r}, x \leftarrow X_i\}.
$$

©H. Delfs and H. Knebl
6. Assume there is a probabilistic polynomial algorithm $A(i, y)$, such that

$$\text{prob}(A(i, f_i(x)) = C_i(B_{i,1}(x), \ldots, B_{i,l}(k(x))) : i \leftarrow K(1^k), x \xleftarrow{\$} D_i)$$

$$> \frac{1}{2} + \frac{1}{P(k)}$$

for k in an infinite subset K of \mathbb{N}.

Define the algorithm $\tilde{A}(i, y, z_1, \ldots, z_l)$ as follows:

$$\tilde{A}(i, y, z_1, \ldots, z_l) := \begin{cases} 1 & \text{if } A(i, y) = C_i(z_1, \ldots, z_l), \\ 0 & \text{else} \end{cases}$$

We have

$$\text{prob}(A(i, f_i(x)) = C_i(z_1, \ldots, z_l) : i \leftarrow K(1^k), x \xleftarrow{\$} D_i, (z_1, \ldots, z_l) \xleftarrow{\$} \{0,1\}^l)$$

$$= \text{prob}(A(i, f_i(x)) = 0 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i) \cdot \text{prob}(C_i(z_1, \ldots, z_l) = 0 : (z_1, \ldots, z_l) \xleftarrow{\$} \{0,1\}^l)$$

$$+ \text{prob}(A(i, f_i(x)) = 1 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i) \cdot \text{prob}(C_i(z_1, \ldots, z_l) = 1 : (z_1, \ldots, z_l) \xleftarrow{\$} \{0,1\}^l)$$

$$= \text{prob}(A(i, f_i(x)) = 0 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i) \cdot \frac{1}{2}$$

$$+ \text{prob}(A(i, f_i(x)) = 1 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i) \cdot \frac{1}{2}$$

$$= \frac{1}{2}$$

Hence

$$| \text{prob}(\tilde{A}(i, f_i(x), z_1, \ldots, z_l) = 1 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i, (z_1, \ldots, z_l) \xleftarrow{\$} \{0,1\}^l)$$

$$- \text{prob}(\tilde{A}(i, f_i(x), B_{i,1}(x), \ldots, B_{i,l}(x)) = 1 : i \leftarrow K(1^k), x \xleftarrow{\$} D_i) |$$

$$= | \frac{1}{2} - \text{prob}(A(i, f_i(x)) = C_i(B_{i,1}(x), \ldots, B_{i,l}(x))) : i \leftarrow K(1^k), x \xleftarrow{\$} D_i |$$

$$> \frac{1}{2} + \frac{1}{P(k)} - \frac{1}{2}$$

$$> \frac{1}{P(k)}$$

for infinitely many k. This is a contradiction.

7. Assume that the bits $B_{i,1}, \ldots, B_{i,l}$ are not simultaneously secure. From the stronger version of Yao’s Theorem, Exercise 5, we conclude that there

Introduction to Cryptography by H. Delfs and H. Knebl
is a probabilistic polynomial algorithm \(A \), a positive polynomial \(P \) and a \(j_k, 1 \leq j_k \leq l(k) \) such that

\[
\begin{align*}
\text{prob}(A(i, f_i(x), B_{i,1}(x) \ldots B_{i,j_k-1}(x)) &= B_{i,j_k}(x) : i \leftarrow K(1^k), x \overset{\mu}{\leftarrow} X_i) \\
&> \frac{1}{2} + \frac{1}{P(k)},
\end{align*}
\]

for infinitely many \(k \). This is a contradiction.

8. The statement, which is analogous to Theorem 8.4, is almost identical to the statement of Theorem 8.4:

For every probabilistic polynomial algorithm \(A \) with inputs \(i \in I_k, z \in \{0,1\}^{l(k)Q(k)}, y \in D_i \) and output in \(\{0,1\} \) and every positive polynomial \(P \in \mathbb{Z}[X] \), there is a \(k_0 \in \mathbb{N} \) such that for all \(k \geq k_0 \)

\[
|\text{prob}(A(i, z, y) = 1 : i \leftarrow K(1^k), z \overset{\mu}{\leftarrow} \{0,1\}^{l(k)Q(k)}, y \overset{\mu}{\leftarrow} D_i) \\
- \text{prob}(A(i, G_i(x), f_{i,Q(k)}^l(x)) = 1 : i \leftarrow K(1^k), x \overset{\mu}{\leftarrow} D_i)| \leq \frac{1}{P(k)}.
\]

The proof runs as the proof of Theorem 8.4. There are only the following differences:

In the distributions \(p_{i,r} \), the elements \(b_i \) have to be chosen from \(\{0,1\}^{l(k)} \);

\(b_j \overset{\mu}{\leftarrow} \{0,1\}^{l(k)} \), and \(X_i \) has to be set as \(X_i := \{0,1\}^{l(k)Q(k)} \times D_i \).

We define the algorithm \(\bar{A} \) as follows:

On inputs \(i \in I_k, y \in D_i, w \in \{0,1\}^{l(k)} \)

a. Randomly choose \(r \), with \(0 \leq r < Q(k) \).

b. Randomly choose \(b_1, b_2, \ldots, b_{Q(k)-r-1} \) in \(\{0,1\}^{l(k)} \).

c. For \(y = f_i(x) \) let \(\bar{A}(i, y, w) := \)

\[
A(i, b_1, \ldots, b_{Q(k)-r-1}, w, B_i(f_i(x)), B_i(f_{i}^2(x)), \ldots, B_i(f_{i}^l(x)), f_{i}^{l+1}(x)).
\]

Then

\[
\begin{align*}
|\text{prob}(\bar{A}(i, f_i(x), B_i(x)) = 1 : i \leftarrow K(1^k), x \overset{\mu}{\leftarrow} D_i) \\
- \bar{A}(i, y, w) = 1 : i \leftarrow K(1^k), y \overset{\mu}{\leftarrow} D_i, w \overset{\mu}{\leftarrow} \{0,1\}^{l(k)}| \\
= \sum_{r=0}^{Q(k)-1} \text{prob}(r) \cdot (\text{prob}(A(i, z, y) = 1 : i \leftarrow K(1^k), (z, y) \overset{p_{i,r+1}}{\leftarrow} X_i) \\
- \text{prob}(A(i, z, y) = 1 : i \leftarrow K(1^k), (z, y) \overset{p_{i,r}}{\leftarrow} X_i)) \\
= \frac{1}{l(k)} \sum_{r=0}^{Q(k)-1} (\text{prob}(A(i, z, y) = 1 : i \leftarrow K(1^k), (z, y) \overset{p_{i,r+1}}{\leftarrow} X_i) \\
- \text{prob}(A(i, z, y) = 1 : i \leftarrow K(1^k), (z, y) \overset{p_{i,r}}{\leftarrow} X_i)) \\
> \frac{1}{l(k)P(k)},
\end{align*}
\]

\(\copyright \) H. Delfs and H. Knebl
for infinitely many k. This contradicts the fact that B is an l-bit hard-core predicate.
9. Provable Secure Encryption

1. The affine cipher is perfectly secret. Namely, let \(m \in \mathbb{Z}_n \) and \(c \in \mathbb{Z}_n \). We look for the number of keys \((a, b) \) such that \(m \) is encrypted as \(c \). \(a \) is a unit modulo \(n \), so we have \(\varphi(n) \) choices for \(a \). Since \(b = c - a \cdot m \mod n \), the choice of \(a \) determines \(b \). We conclude that there are \(\varphi(n) \) keys \((a, b) \) which transform \(m \) to \(c \). If the keys are selected uniformly at random, as assumed, this means that \(\mathrm{prob}(c|m) = \frac{\varphi(n)}{\varphi(n)n} = \frac{1}{n} \). The probability is independent of \(m \), which implies that the affine cipher is perfectly secret (Proposition 9.4).

2. Knowing the key and the ciphertext, the plaintext \(m \) can be derived. Hence, \(H(M|KC) = 0 \). Therefore, we have

\[
0 \leq I(M; K|C) = H(K|C) - H(K|MC)
= H(M|C) - H(M|KC) = H(M|C).
\]
Hence, \(H(K|C) \geq H(M|C) \), because \(H(K|MC) \geq 0 \).

3. It is not ciphertext-indistinguishable, as the following considerations show. Let \((p, g, y := g^x) \) be an ElGamal public key. We have \(E_{p, g, y}(m) = (g^k, y^km) \) for plaintexts \(m \in \mathbb{Z}_p^* \). Applying \(\log_{p, g} \) to both components of \(E_{p, g, y}(m) \), we get \((k, kx + \log_{p, g}(m)) \in \mathbb{Z}_2^{2−1} \). If \(p − 1 = 2^t \cdot a \) odd, then the \(t \) least-significant bits of \(\log_{p, g}(z) \) can be easily computed for \(z \in \mathbb{Z}_p^* \) (see Section 7.1, Exercise 3 in Chapter 7). In particular, we can compute the \(t \) least-significant bits of \(k \), \(x \), \(\log_{p, g}(y^km) \). Since \((kx \mod p − 1) \mod 2^t = kx \mod 2^t \), we can compute the \(t \) least-significant bits of \(kx \mod (p − 1) \) and hence also of \(\log_{p, g}(m) \). Thus, we can distinguish between plaintexts, whose \(\log_{p, g} \) differ in their \(t \) least-significant bits.

If we consider only the least-significant bit, this means that we can distinguish between quadratic residues and non-residues.

4. Note that \(S(i) \) returns two distinct messages \(m_0 \neq m_1 \). We have for every pair \(m_0 \neq m_1 \)

\[
\begin{align*}
\mathrm{prob}(A(i, m_0, m_1, c) = m : i \leftarrow K(1^k), m \leftarrow \{m_0, m_1\}, c \leftarrow E(m)) &= \frac{1}{2} \cdot \mathrm{prob}(A(n, e, m_0, m_1, c) = m_0 : (n, e) \leftarrow I_k, c \leftarrow E(m_0)) \\
&\quad + \frac{1}{2} \cdot \mathrm{prob}(A(n, e, m_0, m_1, c) = m_1 : (n, e) \leftarrow I_k, c \leftarrow E(m_1)) \\
&= \frac{1}{2} + \frac{1}{2} \cdot [\mathrm{prob}(A(n, e, m_0, m_1, c) = m_0 : (n, e) \leftarrow I_k, c \leftarrow E(m_0)) \\
&\quad - \mathrm{prob}(A(n, e, m_0, m_1, c) = m_0 : (n, e) \leftarrow I_k, c \leftarrow E(m_1))].
\end{align*}
\]
5. For $m \in \{0, 1\}^r$, we denote by \overline{m} the padded m.
Assume that the encryption scheme is not ciphertext-indistinguishable.
Then, by Exercise 4, there is a probabilistic polynomial algorithm A and
a positive polynomial P such that for infinitely many k: For all $(n, e) \in I_k$
there are $m_{0,n,e}, m_{1,n,e} \in \{0, 1\}^r$, $m_{0,n,e} \neq m_{1,n,e}$ such that

$$\text{prob}(A(n, e, m_{0,n,e}, m_{1,n,e}, c) = m_{0,n,e} : (n, e) \leftarrow I_k, c \leftarrow \text{RSA}_{n,e}(\overline{m_{0,n,e}}))$$
$$- \text{prob}(A(n, e, m_{0,n,e}, m_{1,n,e}, c) = m_{0,n,e} : (n, e) \leftarrow I_k,$$
$$c \leftarrow \text{RSA}_{n,e}(\overline{m_{1,n,e}})) > \frac{1}{P(k)}.$$

Here, observe that there are only polynomially many, namely $<4k^2$, message pairs $\{m_0, m_1\}$, so we can omit the sampling algorithm S (all message pairs can be considered in polynomial time).

Let Q be a positive polynomial with $\deg Q > \deg P + 1$. Replacing A by a modification, if necessary, we may assume that the probability of those $(n, e) \leftarrow I_k, m_0, m_1 \leftarrow \{0, 1\}^r$, such that either

$$\text{prob}(A(n, e, m_0, m_1, c) = m_0 : c \leftarrow \text{RSA}_{n,e}(\overline{m_0}))$$
$$- \text{prob}(A(n, e, m_0, m_1, c) = m_0 : c \leftarrow \text{RSA}_{n,e}(\overline{m_1})) \geq 0,$$

or the absolute value of the difference is $\leq \frac{1}{Q(k)}$, is $\geq 1 - \frac{1}{Q(k)}$. (The sign of the difference may be computed by a probabilistic polynomial algorithm with high probability, see Proposition 6.18 and, e.g., the proof of Proposition 6.17. Replace the output by its complement, if the sign is negative).

Then

$$\text{prob}(A(n, e, m_0, m_1, c) = m_0 : (n, e) \leftarrow I_k, m_0 \leftarrow \{0, 1\}^r,$$
$$m_1 \leftarrow \{0, 1\}^r \setminus \{m_0\}, c \leftarrow \text{RSA}_{n,e}(\overline{m_0}))$$
$$- \text{prob}(A(n, e, m_0, m_1, c) = m_0 : (n, e) \leftarrow I_k, m_0 \leftarrow \{0, 1\}^r,$$
$$m_1 \leftarrow \{0, 1\}^r \setminus \{m_0\}, c \leftarrow \text{RSA}_{n,e}(\overline{m_1})) > \frac{1}{2^{2r}} \frac{1}{2P(k)} \geq \frac{1}{8k^2P(k)}.$$

Let \tilde{A} be the following algorithm with inputs $(n, e) \in I, y \in \mathbb{Z}_n, z \in \{0, 1\}^r$:

a. Randomly select $m_1 \leftarrow \{0, 1\}^r, z \neq m_1$.

b. $\tilde{A}(n, e, y, z) := \begin{cases} 1 & \text{if } A(n, e, z, m_1, y) = z, \\
0 & \text{else} \end{cases}$.
6. In order to decrypt, the recipient of the encrypted message \(c_1 \ldots c_n\) uses his secret trapdoor information to compute the elements \(x_j = f_i^{-1}(c_j)\). Then, he obtains \(m\) as \(B_i(x_1) \ldots B_i(x_n)\).

To prove security, assume that the scheme is not ciphertext-indistinguishable. Let \(S\) be a sampling algorithm and \(A\) be a distinguishing algorithm such that

\[
\text{prob}(A(i, m_0, m_1, c) = m_0 : i \leftarrow K(1^k), \{m_0, m_1\} \leftarrow S(i), c \leftarrow E(m_0)) \\
\quad - \text{prob}(A(i, m_0, m_1, c) = m_1 : i \leftarrow K(1^k), \{m_0, m_1\} \leftarrow S(i), c \leftarrow E(m_0)) > \frac{1}{P(k)},
\]

for some positive polynomial \(P\) and infinitely many \(k\) (see Exercise 4).

For \(m_0, m_1 \in \{0,1\}^n\) and \(0 \leq r \leq n\), we denote by \(s_r(m_0, m_1)\) the concatenation of the first \(n - r\) bits of \(m_0\) with the last \(r\) bits of \(m_1\). Thus, \(s_0(m_0, m_1) = m_0\) and \(s_n(m_0, m_1) = m_1\). We denote by \(m_{j,l}\) the \(l\)-th bit of \(m_j\). Then \(s_r(m_0, m_1) = m_{0,1} m_{0,2} \ldots m_{0,n-r} m_{1,n-r+1} \ldots m_{1,n}\).

For \(0 \leq r \leq n\), let

\[
p_r := \text{prob}(A(i, m_0, m_1, c) = m_1 : i \leftarrow K(1^k), \{m_0, m_1\} \leftarrow S(i), c \leftarrow E(i, s_r(m_0, m_1))).
\]
be the conditional probability assuming that $m_{0,l} = m_{1,l}$. Analogously for the condition $m_{0,l} \neq m_{1,l}$.

With this notation, we have $p_n - p_0 > \frac{1}{nP(k)}$. Since $p_n - p_0 = \sum_{r=0}^{n}(p_{r+1} - p_r)$, there is some r, $0 < r \leq n$, with $p_{r+1} - p_r > \frac{1}{nP(k)}$ (Recall $n = Q(k)$).

Hence $s_r(m_0, m_1) = s_{r+1}(m_0, m_1)$ if $m_{0,l} = m_{1,l}$, and thus $p_{r,m_{0,l} = m_{1,l}} = p_{r+1,m_{0,l} = m_{1,l}}$. Therefore, the inequality $p_{r+1} - p_r > \frac{1}{nP(k)}$ also implies

$$\text{prob}(m_{0,l} \neq m_{1,l}) \cdot (p_{r+1,m_{0,l} \neq m_{1,l}} - p_{r,m_{0,l} \neq m_{1,l}}) > \frac{1}{nP(k)}$$

We can approximately compute the probabilities p_r by a probabilistic polynomial algorithm, with high probability (Proposition 6.18). We conclude that for a given positive polynomial T, there is a probabilistic polynomial algorithm that on input 1^k computes an r with $p_{r+1} - p_r > \frac{1}{nP(k)}$, with probability $\geq 1 - 1/T(k)$.

Now, we give an algorithm $\hat{A}(i, y)$ which successfully computes the predicate B. In a preprocessing phase, \hat{A} computes an r with $p_{r+1} - p_r > \frac{1}{nP(k)}$ (with probability $\geq 1 - 1/T(k)$). \hat{A} then uses this r for all inputs (i, y) with $i \in I_k$. Let $l := n - r - 1$. Note that $s_r(m_0, m_1)$ and $s_{r+1}(m_0, m_1)$ differ only in the l-th bit. On input (i, y), \hat{A} works as follows:

a. Compute $\{m_0, m_1\} \leftarrow S(i)$.

b. If $m_{0,l} = m_{1,l}$, then return a random $b \leftarrow \{0, 1\}$ and stop.

c. Else, i.e., if $m_{0,l} \neq m_{1,l}$, randomly (and uniformly) choose x_1, \ldots, x_n such that $B_i(x_j)$ equals the j-th bit of $s_r(m_0, m_1)$. Let $y_j := f_i(x_j)$.

(Note that $y_1 \parallel y_2 \parallel \cdots \parallel y_n$ is an encryption of $s_r(m_0, m_1)$.)

d. Let $c := y_1 \parallel \cdots \parallel y_{l-1} \parallel y_{l+1} \parallel \cdots \parallel y_n$.

e. If $A(i, m_0, m_1, c) = m_0$, then return $\hat{A}(i, y) = B_i(x_1) = m_{0,l}$. Else, return $\hat{A}(i, y) = 1 - B_i(x_1) = 1 - m_{0,l} = m_{1,l}$.

We want to prove that for some positive polynomial R and infinitely many k,

$$\frac{1}{2} + \frac{1}{R(k)} < \text{prob}(\hat{A}(i, f_i(x)) = B_i(x) : i \overset{\$}{\leftarrow} k(1^k), x \overset{\$}{\leftarrow} D_i)$$

$$= \text{prob}(m_{0,l} = m_{1,l}) \cdot \text{prob}(\hat{A}(i, f_i(x)) = B_i(x) | m_{0,l} = m_{1,l})$$

$$+ \text{prob}(m_{0,l} \neq m_{1,l}) \cdot \text{prob}(\hat{A}(i, f_i(x)) = B_i(x) | m_{0,l} \neq m_{1,l})$$

Introduction to Cryptography by H. Delfs and H. Knebl
= \text{prob}(m_{0,l} = m_{1,l}) \cdot \frac{1}{2} \\
+ \text{prob}(m_{0,l} \neq m_{1,l}) \cdot \text{prob}(\tilde{A}(i, f_i(x)) = B_i(x) | m_{0,l} \neq m_{1,l}) \\
= (1),

where the probabilities are taken over \(i \overset{\$}{\leftarrow} k(1^k), x \overset{\$}{\leftarrow} D_i\) and the coin tosses. This will be the desired contradiction to the fact that \(B\) is a hard-core predicate. The following probabilities are computed under the assumption that \(m_{0,l} \neq m_{1,l}\) (we omit the assumption in our notation).

\[
\text{prob}(\tilde{A}(i, f_i(x)) = B_i(x)) \\
= \text{prob}(B_i(x) = m_{0,l}) \cdot \text{prob}(\tilde{A}(i, f_i(x)) = m_{0,l} | B_i(x) = m_{0,l}) \\
+ \text{prob}(B_i(x) = m_{1,l}) \cdot \text{prob}(\tilde{A}(i, f_i(x)) = m_{1,l} | B_i(x) = m_{1,l}) \\
= \frac{1}{2} q_1 + \frac{1}{2} q_2 + \varepsilon \\
= (2)
\]

with

\[
q_1 := \text{prob}(A(i, m_0, m_1, c) = m_0 : i \overset{\$}{\leftarrow} k(1^k), \\
\{m_0, m_1\} \leftarrow S(i), c \leftarrow E(i, s_r(m_0, m_1)) \\
= 1 - \text{prob}(A(i, m_0, m_1, c) = m_1 : i \overset{\$}{\leftarrow} k(1^k), \\
\{m_0, m_1\} \leftarrow S(i), c \leftarrow E(i, s_r(m_0, m_1)) \\
= 1 - p_{r,m_0 \neq m_1,l},
\]

\[
q_2 := \text{prob}(A(i, m_0, m_1, c) = m_1 : i \overset{\$}{\leftarrow} k(1^k), \\
\{m_0, m_1\} \leftarrow S(i), c \leftarrow E(i, s_{r+1}(m_0, m_1)) \\
= p_{r+1,m_0 \neq m_1,l},
\]

and a negligibly small \(\varepsilon\), i.e., given a positive polynomial \(U, \varepsilon \leq \frac{1}{U(k)}\) for sufficiently large \(k\) (see Exercise 7 in Chapter 6).

Thus

\[
(2) = \frac{1}{2} + p_{r+1,m_0 \neq m_1,l} - p_{r,m_0 \neq m_1,l} + \varepsilon.
\]

We insert (2) in (1) and get

\[
(1) = \frac{1}{2} + \text{prob}(m_{0,l} \neq m_{1,l}) \cdot (p_{r+1,m_0 \neq m_1,l} - p_{r,m_0 \neq m_1,l} + \varepsilon) \\
> \frac{1}{2} + (1 - \frac{1}{T(k)}) \cdot \frac{1}{nP(k)} + \varepsilon \\
> \frac{1}{2} + \frac{1}{2nP(k)} = \frac{1}{2} + \frac{1}{2Q(k)P(k)},
\]

for infinitely many \(k\).

The proof is finished.

© H. Delfs and H. Knebl
7. To decrypt an encrypted message $c_1 \ldots c_n$, Bob checks (by using the factorization of n), whether c_i is a quadratic residue or not. The security proof is almost identical to the proof of Exercise 6. It leads to a contradiction to statement 2 in Exercise 9 in Chapter 6, which is equivalent to the quadratic residuosity assumption (see Exercise 9).

8. Assume that there is a probabilistic polynomial distinguishing algorithm $\tilde{A}(n,m_0,m_1,c)$, with inputs $n \in I$, $m_0,m_1 \in \mathbb{Z}_n$, $c \in \mathbb{Z}_n^*$, a probabilistic polynomial sampling algorithm $S(n)$ and a positive polynomial P such that

\[
\text{prob}(\tilde{A}(n,m_0,m_1,c) = m) > \frac{1}{2} + \frac{1}{P(k)},
\]

for infinitely many k, where $E(n,m) = g^m r^n$, $r \in \mathbb{Z}_n^*$, $g = [1 + n]$.

We define a probabilistic polynomial algorithm $A = A(n,z)$ to distinguish n-th residues and randomly chosen elements in \mathbb{Z}_n^*, with inputs $n \in I$, $z \in \mathbb{Z}_n^*$ and output in $\{0,1\}$:

a. Apply $S(n)$ and get $\{m_0,m_1\} := S(n)$.

b. Randomly choose b in $\{0,1\}$: $b \leftarrow \{0,1\}$, set $c = g^{m_b} z$.

c. Let $A(n,z) := \begin{cases} 1 & \text{if } \tilde{A}(n,m_0,m_1,c) = b, \\ 0 & \text{otherwise}. \end{cases}$

If z is a n-th residue then c is an encryption of m_b. \tilde{A} returns b with probability $> \frac{1}{2} + 1/P(k)$. Then A also returns 1 with probability $> \frac{1}{2} + 1/P(k)$. If z is not a n-th residue then $z = g^{m'_b} r^n$, $m_b \neq 0$, $g^{m_b} z = g^{m_b + m'_b} r^n$ is from \tilde{A}’s view a random element from \mathbb{Z}_n^*, independently chosen from m_b. Thus \tilde{A} returns b with probability $1/2$ and A also returns 1 with probability $1/2$. Overall we get

\[
|\text{prob}(A(n,x^n) = 1 : n \leftarrow I_k, x \leftarrow \mathbb{Z}_n^*) - \text{prob}(\tilde{A}(n,x) = 1 : n \leftarrow I_k, x \leftarrow \mathbb{Z}_n^*)| > \frac{1}{2} + \frac{1}{P(k)} - \frac{1}{2} = \frac{1}{P(k)},
\]

for infinitely many k. This contradicts the decisional composite residuosity assumption.
10. Unconditional Security of Cryptosystems

1. a) Let \(x_0, x_1 \in \mathbb{F}_2 \), \(x_0 \neq x_1 \). Multiplying in \(\mathbb{F}_2 \) by some element \(x \in \mathbb{F}_2 \) is a linear map over \(\mathbb{F}_2 \). Thus, \(a \mapsto a \cdot (x_1 - x_0) \) can be computed by an \(l \times l \)-matrix \(M \) over \(\mathbb{F}_2 \). \(M \) is invertible, because \(x_1 \neq x_0 \). Let \(M' \) be the first \(f \) rows of \(M \). Then \(M' \) has rank \(f \). Therefore

\[
|\{a \in \mathbb{F}_2^l \mid M' \cdot a = 0\}| = 2^{l-f} \quad \text{and hence}
\]

\[
\text{prob}(\text{msb}(a \cdot x_0)) = \text{msb}(a \cdot x_1) : a \in \mathbb{F}_2^l = 2^{l-f} \cdot 2^{-f} = 2^{-f}.
\]

b) Let \(x_0, x_1, z_0, z_1 \in \mathbb{F}_2^l \), \(x_0 \neq x_1 \) and \(y_0, y_1 \in \mathbb{F}_2^l \). The equation

\[
\begin{pmatrix}
 x_0 & 1 \\
 x_1 & 1
\end{pmatrix}
\begin{pmatrix}
 a_0 \\
 a_1
\end{pmatrix}
= \begin{pmatrix}
 z_0 \\
 z_1
\end{pmatrix}
\]

has exactly one solution, since \(x_0 \neq x_1 \) and hence, the matrix is invertible. Thus

\[
|\{(a_0, a_1) \mid h_{a_0,a_1}(x_0) = y_0, h_{a_0,a_1}(x_1) = y_1\}| = 2^{l-f}2^{l-f} \quad \text{and}
\]

\[
\text{prob}(h_{a_0,a_1}(x_0) = y_0, h_{a_0,a_1}(x_1) = y_1 : a_0 \leftarrow \mathbb{F}_2^l, a_1 \leftarrow \mathbb{F}_2^l) = 2^{-f} \cdot 2^{-f}
\]

\[
= \frac{1}{|\mathbb{F}_2^l|^2}.
\]

2. The straightforward computation by using the definition of Rényi entropy gives

\[
H_2(X) = 3.61, H_2(X \mid Y) = 2.96, H_2(Y) = 0.50.
\]

Thus \(H_2(Y) + H_2(X \mid Y) < H_2(X) \).

3.

\[
H_2(X) = -\log_2 \left((2^{-n/4})^2 + (2^n - 1) \frac{1 - 2^{-n/4})^2}{(2^n - 1)^2} \right)
\]

\[
= -\log_2 \left(2^{-n/2} + \frac{(1 - 2^{-n/4})^2}{2^n - 1} \right) \approx \frac{n}{2},
\]

\(H_2(X \mid Y = 0) = 0 \), because \(X \mid Y = 0 \) is deterministic, and

\(H_2(X \mid Y = 1) = \log_2(2^n - 1) \), because \(X \mid Y = 1 \) is uniformly distributed.

Hence

\[
H_2(X \mid Y) = \text{prob}(Y = 0) \cdot H_2(X \mid Y = 0) + \text{prob}(Y = 1) \cdot H_2(X \mid Y = 1)
\]

\[
= (1 - 2^{-n/4}) \log_2(2^n - 1) = (1 - 2^{-n/4}) \log_2(2^n(1 - 2^{-n}))
\]

\[
= (1 - 2^{-n/4})(n + \log_2(1 - 2^{-n})) \geq (1 - 2^{-n/4})(n - 2^{-n}/\ln(2))
\]

\[
> (1 - 2^{-n/4})(n - 2^{-n}) > n - 2^{-n/4}n - 2^{-n},
\]

which is approximately twice as large as \(H_2(X) \).

© H. Delfs and H. Knebl
4. prob\((X = x_i) = \text{prob}(E) \cdot \text{prob}(X = x_i|E) \)

 \[
 = \begin{cases}
 (1-p) \cdot \text{prob}(X = x_i|E) & \text{if } i \neq i_0, \\
 p + (1-p) \cdot \text{prob}(X = x_i|E) & \text{if } i = i_0.
 \end{cases}
 \]

Let \(q_i := \text{prob}(X = x_i|E) \).

\[
\text{H}(X) = - \sum_{i=1}^{m} \text{prob}(X = x_i) \log_2(\text{prob}(X = x_i)) \\
= - \sum_{i=1}^{m} (1-p) \cdot q_i \log_2((1-p) \cdot q_i) \\
- p \log_2(p + (1-p) \cdot q_{i_0}) \\
- (1-p) \cdot q_{i_0} \log_2(p + (1-p) \cdot q_{i_0}) \\
+ (1-p) \cdot q_{i_0} \log_2((1-p) \cdot q_{i_0})
\]

\[
= - (1-p) \sum_{i=1}^{m} q_i \log_2(q_i) \\
+ p \log_2(p + (1-p) \cdot q_{i_0}) \\
+ (1-p) \cdot q_{i_0} \log_2((1-p) \cdot q_{i_0})
\]

\[
\leq - (1-p) \log_2(1-p) + (1-p) \log_2(m) - p \log_2(p) \\
= (1-p) \log_2(m) + h(p).
\]

Now let \(q_i = \text{prob}(X = x_i|E) = 1/m, 1 \leq i \leq m \). Then we can replace

\[
\text{the inequality by the following equality and continue}
\]

\[
= - (1-p) \log_2(1-p) + (1-p) \log_2(m) - p \log_2(p + (1-p) \cdot \frac{1}{m})
\]

\[
- (1-p) \cdot \frac{1}{m} \log_2 \left(1 + \frac{p}{(1-p) \cdot \frac{1}{m}} \right)
\]

\[
\approx - (1-p) \log_2(1-p) + (1-p) \log_2(m) - p \log_2(p) \text{ for large } m
\]

\[
= (1-p) \log_2(m) + h(p).
\]

Introduction to Cryptography by H. Delfs and H. Knebl
6. From the well known equalities (see, for example, [BroSemMusMüh07, 2.7.2])

\[\sin^2(x) = \frac{1}{2}(1 - \cos(2x)), \quad \cos^2(x) = \frac{1}{2}(1 + \cos(2x)) \]

we get

\[\cos^2(x) \cos^2(y) + \sin^2(x) \sin^2(y) = \frac{1}{4}((1 + \cos(2x))(1 + \cos(2y)) + (1 - \cos(2x))(1 - \cos(2y))) = \frac{1}{2}(1 + \cos(2x) \cos(2y)). \]

7. Let \(E \) and \(E' \) be the random variables that capture the quantum states which Eve measures and re-sends, respectively.

a. From Lemma 10.18 we get that

\[\text{prob}(E = |w_E\rangle | A = |v\rangle) = \text{prob}(E = |v_E\rangle | A = |w\rangle) = \sin^2(\theta), \]

\[\text{prob}(B = |v\rangle | E' = |w_E'\rangle) = \text{prob}(B = |w\rangle | E' = |v_E'\rangle) = \sin^2(\theta'), \]

hence

\[\text{prob}(E = |v_E\rangle | A = |v\rangle) = \text{prob}(E = |w_E\rangle | A = |w\rangle) = \cos^2(\theta), \]

\[\text{prob}(B = |v\rangle | E' = |v_E'\rangle) = \text{prob}(B = |w\rangle | E' = |w_E'\rangle) = \cos^2(\theta'). \]

Applying the addition theorem from Exercise 6 (and Proposition B.3), we now obtain

\[\text{prob}(B = |w\rangle | A = |w\rangle) = \text{prob}(B = |v\rangle | A = |v\rangle) = \cos^2(\theta) \cos^2(\theta') + \sin^2(\theta) \sin^2(\theta') \]

and hence

\[\text{prob}(B = |v\rangle | A = |w\rangle) = \text{prob}(B = |w\rangle | A = |v\rangle) = \frac{1}{2}(1 - \cos(2(\theta) \cos(2\theta')). \]

From Lemma 10.18 and the subsequent remark we get that
prob(\(E = |w_E\rangle | A = |v\rangle\)) = \frac{1}{2} (1 - \cos(\delta) \sin(2\theta)),
\prob(B = |v\rangle | E' = |w_E\rangle) = \prob(B = |v\rangle | E' = |v_E\rangle)
= \frac{1}{2} (1 - \cos(\delta') \sin(2\theta')).

\text{hence}
\prob(\(E = |v_E\rangle | A = |v\rangle\)) = \prob(\(E = |w_E\rangle | A = |w\rangle\))
= \frac{1}{2} (1 + \cos(\delta) \sin(2\theta)),
\prob(\(B = |v\rangle | E' = |v_E\rangle\)) = \prob(\(B = |v\rangle | E' = |w_E\rangle\))
= \frac{1}{2} (1 + \cos(\delta') \sin(2\theta')).

\text{We now obtain}
\prob(B = |w\rangle | A = |w\rangle) = \prob(B = |v\rangle | A = |v\rangle)
= \frac{1}{2} (1 + \cos(\delta) \sin(2\theta)) \cdot \frac{1}{2} (1 + \cos(\delta') \sin(2\theta'))
+ \frac{1}{2} (1 - \cos(\delta) \sin(2\theta)) \cdot \frac{1}{2} (1 - \cos(\delta') \sin(2\theta'))
= \frac{1}{2} (1 + \sin(2\theta) \sin(2\theta') \cos(\delta) \cos(\delta')).

\text{Hence}
\prob(B = |w\rangle | A = |v\rangle) = \prob(B = |v\rangle | A = |w\rangle)
= \frac{1}{2} (1 - \sin(2\theta) \sin(2\theta') \cos(\delta) \cos(\delta')).

Alice selects the encoding basis randomly. Therefore, the error probability is
\(\epsilon = \epsilon(\theta, \theta', \delta, \delta')\)
= \frac{1}{2} (\prob(B = |w\rangle | A = |v\rangle) + \prob(B = |w\rangle | A = |v\rangle'))
= \frac{1}{4} (2 - \cos(2\theta) \cos(2\theta') - \sin(2\theta) \sin(2\theta') \cos(\delta) \cos(\delta')).

At this point, we see that \(\epsilon = \frac{1}{4}\) if Eve uses the same basis for
measurement and re-encoding, i.e., \(\theta = \theta', \delta = \delta', \) and \(\gamma = \alpha\) or
\(\gamma = \alpha + \pi,\) i.e., \(\delta = 0\) or \(\delta = \pi\) and hence \(\cos^2(\delta) = 1.\)
b. The error rate ε depends on the differences δ, δ' of the phase factors. We are interested in the minimum and maximum values of ε. The partial derivates with respect to δ and δ' vanish at these points. Therefore, we consider the partial derivatives

$$\frac{\partial \varepsilon}{\partial \delta} = \frac{1}{4} \sin(2\theta) \sin(2\theta') \sin(\delta) \cos(\delta'),$$

$$\frac{\partial \varepsilon}{\partial \delta'} = \frac{1}{4} \sin(2\theta) \sin(2\theta') \cos(\delta) \sin(\delta').$$

The derivative $\frac{\partial \varepsilon}{\partial \delta}$ is 0 if and only if

(a) $\theta = k \cdot \frac{\pi}{2}, k \in \mathbb{Z}$, or $\theta' = k \cdot \frac{\pi}{2}, k \in \mathbb{Z}$, or
(b) $\delta = k \cdot \pi, k \in \mathbb{Z}$, or
(c) $\delta' = \frac{\pi}{2} + k \cdot \pi, k \in \mathbb{Z}$.

The derivative $\frac{\partial \varepsilon}{\partial \delta'}$ is 0 if and only if

(a) $\theta = k \cdot \frac{\pi}{2}, k \in \mathbb{Z}$, or $\theta' = k \cdot \frac{\pi}{2}, k \in \mathbb{Z}$, or
(b') $\delta' = k \cdot \pi, k \in \mathbb{Z}$ or
(c') $\delta = \frac{\pi}{2} + k \cdot \pi, k \in \mathbb{Z}$.

If a or (c) or (c') occurs, then $3/4 \geq \varepsilon = \frac{1}{4}(2 - \cos(2\theta) \cos(2\theta')) \geq 1/4$.

In the remaining case where (b) and (b') occur, we have $\cos(\delta) \cos(\delta') = \pm 1$.

If $\cos(\delta) \cos(\delta') = 1$, then $\varepsilon = \frac{1}{4}(2 - \cos(2\theta) \cos(2\theta') \sin(2\theta)(\sin(2\theta')) = \frac{1}{4}(2 - \cos(2(\theta - \theta'))),$ hence $3/4 \geq \varepsilon \geq 1/4$, with equality on either of the sides if and only if $\theta = \theta' + k \frac{\pi}{2}$. If $\cos(\delta) \cos(\delta') = -1$ then $\varepsilon = \frac{1}{4}(2 - \cos(2\theta) \cos(2\theta') + \sin(2\theta)(\sin(2\theta')) = \frac{1}{4}(2 - \cos(2(\theta + \theta'))),$ hence $3/4 \geq \varepsilon \geq 1/4$, with equality on either of the sides if and only if $\theta = -\theta' + k \frac{\pi}{2}$.

© H. Delfs and H. Knebl
11. Provably Secure Digital Signatures

1. We can use a pair of claw-free one-way permutations to construct a collision-resistant compression function \(\{0,1\}^{l(k)} \rightarrow \{0,1\}^{g(k)} \), as in Section 11.2. The collision resistance can be proven as in the proof of Proposition 11.7. Here, the prefix-free encoding is not necessary, since all strings in the domain have the same binary length. Then, we can derive a provably collision-resistant family of hash functions by applying Merkle's meta method.

2. Let \(K \) be the key generator of \(H \).

Let \(A(i,y) \) be a probabilistic algorithm with output in \(\{0,1\}^{\leq l_i} \) which successfully computes pre-images, i.e., there is a positive polynomial \(P \), such that

\[
\Pr(A(i,h_i(x)) \in h_i^{-1}(h_i(x)) : i \leftarrow K(1^k), x \leftarrow \{0,1\}^{\leq l_i}) \geq \frac{1}{P(k)}
\]

for \(k \) in an infinite subset \(K \subseteq \mathbb{N} \).

By \(D_k \) we denote the subset \(\{(i,x) \mid i \in I_k, x \in \{0,1\}^{\leq l_i}, h_i^{-1}(h_i(x)) = \{x\}\} \) of those \((i,x)\) where \(x \) is the only pre-image of \(h_i(x) \) and by \(D_i \) be the set of elements of \(D_k \) with key \(i \). \(h_i \) maps \(D_i \) injectively to \(\{0,1\}^{g(k)} \). Thus \(D_i \) contains at most \(2^{g(k)} \) elements. Moreover, we have \(l_i \geq g(k) + k \) by assumption, thus

\[
\Pr(D_k) \leq \sum_{i \in I_k} \Pr(i) \cdot \frac{2^{g(k)}}{2^{l_i+1} - 1} \leq \sum_{i \in I_k} \Pr(i) \cdot \frac{1}{2^k} = \frac{1}{2^k}.
\]

In the computation, observe that the number of bit strings \(\leq l_i \) is equal to \(\sum_{j=1}^{l_i} 2^j = 2^{l_i+1} - 1 \).

Let \(D'_i := \{0,1\}^{\leq l_i} \setminus D_i \) be the complement of \(D_i \).

Lemma B.5 tells us that

\[
\Pr(A(i,h_i(x)) \in h_i^{-1}(h_i(x)) : i \leftarrow K(1^k), x \leftarrow \{0,1\}^{\leq l_i}) \geq \frac{1}{P(k)} - \frac{1}{2^k} \geq \frac{1}{2P(k)}
\]

for \(k \) in an infinite subset \(K' \subseteq \mathbb{N} \).

Now let \(\tilde{A}(i) \) be the following algorithm:

a. Randomly choose \(x \leftarrow \{0,1\}^{\leq l_i} \).

b. Return \((x, A(i,h_i(x)))\).

If \(x \neq A(i, h_i(x)) \) and \(A(i, h_i(x)) \in h_i^{-1}(h_i(x)) \), then \(\tilde{A} \) returns a collision of \(H \). (In fact, the algorithm computes a second pre-image. Therefore, our proof will even show that second-pre-image resistance implies the one-way property.)

We compute the probability of this event.

Introduction to Cryptography by H. Delfs and H. Knebl
\[\text{prob}(x \neq A(i, h_i(x)), A(i, h_i(x)) \in h_i^{-1}(h_i(x)) : \]
\[i \leftarrow K(1^k), x \leftarrow \{0, 1\}^{\leq l} \]
\[\geq \text{prob}(x \neq A(i, h_i(x)), A(i, h_i(x)) \in h_i^{-1}(h_i(x)) : \]
\[i \leftarrow K(1^k), x \leftarrow \{0, 1\}^{\leq l} \]
\[= \text{prob}(A(i, h_i(x)) \in h_i^{-1}(h_i(x)) : i \leftarrow K(1^k), x \leftarrow \{0, 1\}^{\leq l}) \cdot \text{prob}(x \neq A(i, h_i(x)) | A(i, h_i(x)) \in h_i^{-1}(h_i(x)) : \]
\[i \leftarrow K(1^k), x \leftarrow \{0, 1\}^{\leq l} \]
\[\geq \frac{1}{2P(k)} \cdot \frac{1}{2} - \frac{1}{2^k} \]
\[\geq \frac{1}{5P(k)} \]

for infinitely many \(k \in \mathcal{K}' \). This is a contradiction, since \(\mathcal{H} \) is assumed to be collision-resistant. Note that for \(x \in \mathcal{D}_i \) the fibre \(h_i^{-1}(h_i(x)) \) contains more than one element. So, for a randomly chosen \(x \), the probability that \(x \neq A(i, h_i(x)) \) is \(\geq 1/2 \).

3. a) RSA:
The attacks discussed in Section 3.3.1 are key-only attacks against the RSA one-way function which may result in the retrieval of secret keys. Forging signed messages \((m^e, m)\) (Section 3.3.4) is an existential forgery by a key-only attack. The “homomorphism attacks” can be used for universal forgery by chosen-message attacks.

b) ElGamal:
The retrieval of secret keys is possible, if the random number \(k \) is figured out by the adversary in a known-signatures attack (see Section 3.4.2). Existential forgery by a key-only attack is possible (loc.cit.). If step 1 in the verification procedure is omitted, then signatures can be universally forged by a known-signature attack, as Bleichenbacher observed (loc.cit.).

c. For a given \(m \), about \(n \) of the \(n^2 \) pairs \((s_1, s_2)\) are solutions of \(m = s_1^2 + ys_2^2 \). Choosing a pair randomly (and uniformly), the probability that it is a solution is about \(n^{-1} \approx 2^{-|m|} \) and hence negligible.

©H. Delfs and H. Knebl
5. a. We have $f_{[m],i}(\sigma(i, x, m)) = x = f_{[m'],i}(\sigma(i, x, m'))$. Let $[m] = m_1 \ldots m_r$ and $[m'] = m'_1 \ldots m'_{r'}$. Let l be the smallest index u with $m_u \neq m'_u$. Such an index l exists, since neither $[m]$ is a prefix of $[m']$ nor vice versa. We have $f_{m_1 \ldots m_r,i}(\sigma(i, x, m)) = f_{m'_1 \ldots m'_{r'},i}(\sigma(i, x, m'))$, since $f_{0,i}$ and $f_{1,i}$ are injective. Then $f_{m_1+\ldots+m_r,i}(\sigma(i, x, m))$ and $f_{m'_1+\ldots+m'_{r'},i}(\sigma(i, x, m'))$ are a claw of (f_{0}, f_{1}).

b. A successful existential forgery by a key-only attack computes a valid signature $\sigma(i, x, m)$ from (i, x), for some message m. Let b be the first bit of $[m]$, i.e., $[m] = b m'$. Then $f_{m',i}(\sigma(i, x, m)) = f_{b,i}^{-1}(x)$. Thus, a pre-image of x may be computed from (i, x), for $f_{0,i}$ or $f_{1,i}$. We obtain a contradiction to the one-way property of f_{0} and f_{1}.

c. Adaptively-chosen-message attack means in a one-time signature scheme that the adversary knows the signature σ of one message m of his choice and tries to forge the signature σ' for another message m'.

Assume that a successful forger F exists performing an adaptively-chosen-message attack. Then, we can define an algorithm A which computes claws of f_{0}, f_{1} with a non-negligible probability.

On input $i \in I_k$, A works as follows:

i. Randomly choose a message $\tilde{m} \leftarrow \{0, 1\}^{\lceil \log_2(k) \rceil}$.

ii. Randomly choose $x \leftarrow D_i$ and compute $z := f_{[\tilde{m}],i}(x)$.

iii. Call $F(i, z)$ with the key (i, z).

Note that z is also uniformly distributed in D_i, since x was chosen uniformly and $f_{[\tilde{m}],i}$ is bijective.

iv. $F(i, z)$ requests the signature σ for a message m. If $m = \tilde{m}$ (which happens with probability $\geq 1/k^c$), then $\sigma = x$ is supplied to F.

Otherwise, A returns with a failure.

v. If $F(i, z)$ now returns a valid forged signature σ' for a message $m' \neq m$, then A easily finds a claw of f_{0}, f_{1}, as shown in a).

A’s probability of success is greater than or equal to F’s probability of success multiplied by $1/k^c$, hence non-negligible. This is a contradiction.

d. We do not know how to simulate the legitimate signer and provide the forger with the requested signature, with a non-negligible probability. The approach of c), simply to guess the message in advance, does not work, if there are exponentially many messages.

6. a) The verification procedure for a signature $\sigma = (s, \tilde{m})$ for m is:

1. Check whether \tilde{m} is well-formed, i.e., $\tilde{m} = [\tilde{m}_1] \ldots ||[\tilde{m}_r]$ with messages $m_j \in \{0, 1\}^\ast$.

Introduction to Cryptography by H. Delfs and H. Knebl
We now define an algorithm ˜
\[m, (s, ˜m) \]
for k (m, valid signed message (encoding given in Section 11.2, and assume that an adversary learns a The first step cannot be omitted, in general. Take, e.g., the prefix-free f
\[b \]
either finds a claw of
\[i, x, F \]
when supplied with
\[l, x \]
that were generated before by the user with key (i, x) (l = l(k) a polynomial function). Recall that the messages of user (i, x) are generated by the probabilistic polynomial algorithm M(i). Assume that F is successful. This means that there is a positive polynomial such that
\[
\text{prob}(F(i, x, m_1, \sigma_1, \ldots, m_l, \sigma_l) = (\tilde{m}, \tilde{\sigma}), \\
\text{Verify}(\tilde{m}, \tilde{\sigma}) = \text{accept} : i \leftarrow I_k, x \leftarrow D_i(, m_1, \ldots, m_l) \leftarrow M(i)) > \frac{1}{P(k)},
\]
for k in an infinite subset K ⊆ N.

We now define an algorithm A which, with non-negligible probability, either finds a claw of f_0, f_1 or inverts f_0 resp. f_1. This will be the desired contradiction. A works on input i, x as follows:

a. \((m_1, \ldots, m_l) := M(i) \). Let \(m := [m_1] \ldots [m_l] \).
b. Let \(z := f_{m,i}(x) = f_{[m_1],i}(f_{[m_2],i}(\ldots f_{[m_l],i}(x) \ldots)) \).
c. Generate the signatures
\[
\sigma(i, z, m_1) = (f_{[m_2],i}(\ldots f_{[m_l],i}(x), \epsilon) \\
\sigma(i, z, m_2) = (f_{[m_3],i}(\ldots f_{[m_l],i}(x), [m_1]) \\
\ldots \\
\sigma(i, z, m_l) = (x, [m_1] \ldots [m_{l-1}]).
\]
Here, \(\epsilon \) denotes the empty string.
d. \((\tilde{m}, \tilde{\sigma}) := F(i, z, m_1, \sigma(i, z, m_1), \ldots, m_l, \sigma(i, z, m_l)) \).
We have \(\tilde{\sigma} = (s, \tilde{m}) \) and \(\tilde{m} \neq m_j, 1 \leq j \leq l \). If \((\tilde{m}, \tilde{\sigma}) \) does not pass the verification procedure, we return some random element and stop. Otherwise, if \((\tilde{m}, \tilde{\sigma}) \) is a valid signature, i.e., \(f_{\tilde{m}[\tilde{m}],i}(s) = z \), we continue.
e. \(\tilde{m}[\tilde{m}] \) is not a prefix of m, because otherwise \(\tilde{m} \) would be equal to one of the \(m_j \). Here, note that by step 1 in the verification procedure, \(\tilde{m} \) is well-formed with respect to the prefix-free encoding.

The algorithm now distinguishes two cases.
f. Case 1: m is not a prefix of $\tilde{m}||\tilde{m}$.
We have $\sigma(i, z, m_l) = (x, \ldots)$. Since $f_{m, i}(x) = z = f_{\tilde{m}||\tilde{m}}(s)$, we immediately find a claw of $f_{0, i}, f_{1, i}$, as in Exercise 6 a). We return this claw.

g. Case 2: m is a prefix of $\tilde{m}||\tilde{m}$.
Let $\tilde{m}||\tilde{m} = m||u$. Note that $u \neq \varepsilon$, because $\tilde{m} \neq m_l$. Let $u = bu', b \in \{0, 1\}$. Since $f_{u, i}(s) = f_{m, i}^{-1}(z) = x$, we can immediately compute $f_{b, i}^{-1}(x) = f_{u', i}(s)$. We return this pre-image.

We have

$$\text{prob}(A(i, x) \text{ is a claw or one of the pre-images } f_{0, i}^{-1}(x), f_{1, i}^{-1}(x):$$

$$i \leftarrow I_k, x \leftarrow D_i) = \text{prob}(F(i, f_{m, i}(x), m_1, \sigma(i, f_{m, i}(x), m_1), \ldots, m_l, \sigma(i, f_{m, i}(x), m_l)))$$

$$= (\tilde{m}, \tilde{\sigma}),$$

$$\text{Verify}(\tilde{m}, \tilde{\sigma}) = \text{accept : }$$

$$i \leftarrow I_k, (m_1, \ldots, m_l) \leftarrow M(i), x \leftarrow D_i) = \text{prob}(F(i, z, m_1, \sigma(i, z, m_1), \ldots, m_l, \sigma(i, z, m_l)) = (\tilde{m}, \tilde{\sigma}),$$

$$\text{Verify}(\tilde{m}, \tilde{\sigma}) = \text{accept : } i \leftarrow I_k, (m_1, \ldots, m_l) \leftarrow M(i), z \leftarrow D_i)$$

$$> \frac{1}{P(k)},$$

for infinitely many k, a contradiction to the claw-freeness and the one-way property of f_0, f_1.

Note that $f_{m, i}$ is a permutation of D_i and hence $z = f_{m, i}(x), x \leftarrow D_i$ is the uniform distribution $z \leftarrow D_i$.